Abstract:
A liquid crystal display device is provided that comprises a gate line; a first insulating film on the gate line; a data line crossing the gate line to define a pixel region, the pixel region having a transmissive area and a reflective area; a thin film transistor connected to the gate line and the data line; a pixel electrode formed in the pixel region ; a second insulating film on the thin film transistor; a storage capacitor including a storage upper electrode overlapping the gate line; a transmission hole exposing at least a portion of the pixel electrode, and a reflective electrode formed in the reflective area of the pixel region, the reflective electrode connecting the pixel electrode with thin film transistor and the storage upper electrode, wherein the gate line and the pixel electrode include a first transparent conductive layer.
Abstract:
The present invention provides a method and associated structure for forming an electrostatically-doped carbon nanotube device. The method includes providing a carbon nanotube having a first end and a second end. The method also includes disposing a first metal contact directly adjacent to the first end of the carbon nanotube, wherein the first metal contact is electrically coupled to the first end of the carbon nanotube, and disposing a second metal contact directly adjacent to the second end of the carbon nanotube, wherein the second metal contact is electrically coupled to the second end of the carbon nanotube. The method further includes disposing a first metal electrode adjacent to and at a distance from the first end of the carbon nanotube, wherein the first metal electrode is capacitively coupled to the first end of the carbon nanotube, and disposing a second metal electrode adjacent to and at a distance from the second end of the carbon nanotube, wherein the second metal electrode is capacitively coupled to the second end of the carbon nanotube. The method still further includes selectively applying a first bias to the first metal electrode to electrostatically dope the first end of the carbon nanotube and selectively applying a second bias to the second metal electrode to electrostatically dope the second end of the carbon nanotube.
Abstract:
Certain aspects of a method and system for a wireless device to upload media to a web-based server may include a network that includes a wireless device and one or more mobile devices. The wireless device may be configured based on received authentication credentials from one or more mobile devices. A unique identification may be communicated automatically without user input, to the one or more mobile devices when the media content is newly generated by the wireless device. The received authentication credentials and the unique identification may enable the newly generated media content to be uploaded to the web-based sever. The wireless device may be operable to upload the newly generated media content to the web-based server via the one or more mobile devices, if the wireless device is unable to connect to the web-based server directly using wireless network credentials corresponding to one or more authorized wireless networks.
Abstract:
A method and associated structure for forming a free-standing electrostatically-doped carbon nanotube device is described. The method includes providing a carbon nanotube on a substrate in such a way as to have a free-standing portion. One way of forming a free-standing portion of the carbon nanotube is to remove a portion of the substrate. Another described way of forming a free-standing portion of the carbon nanotube is to dispose a pair of metal electrodes on a first substrate portion, removing portions of the first substrate portion adjacent to the metal electrodes, and conformally disposing a second substrate portion on the first substrate portion to form a trench.
Abstract:
Disclosed are a hinge assembly and a mobile device having the hinge assembly. In the mobile device, a rotation portion 14 slides and rotates on a base portion 10, so as to be inclined to the base portion 10. For this reason, the rotation portion 14 is connected to the base portion by means of the hinge assembly 20 so as to slide and rotate on the base portion 10. The rotation portion 14 slides on the base portion by a predetermined distance, and then rotates to be inclined at a desired angle with respect to the base portion 10. The rotation portion 14 easily rotates with respect to the base portion of the mobile device, so that the status of the mobile device can be easily converted. Further, when the status of the mobile device is converted, the front, rear, left and right of a display screen is not changed. As a result, the mobile device should not have a structure of changing a display direction of the display screen. Further, there is an advantage in that an electric connection between the base portion and the rotation portion by means of a connection link mechanism can be stably achieved.
Abstract:
A device and method for providing an optical trench structure for a pixel which guides incoming light onto the photosensor of the pixel. The optical trench structure has an optically reflecting barrier that substantially mitigates optical crosstalk. The optical trench structure is made of low dielectric constant material with an index of refraction that is less than the index of refraction of the material of surrounding layers (e.g., the substrate). This difference in refractive index causes an internal reflection into an optical path existing between a lens and pixel.
Abstract:
A substrate support plate transfer apparatus for fabricating an organic light emitting display is disclosed. In one embodiment, the apparatus includes a quartz plate transferred into a bonding processing chamber for an organic light emitting device, a protection frame on which the quartz plate is placed in order to transfer the quartz plate into the chamber, and a frame-shaped supporting plate including a sliding transfer device for helping the transfer of the protection frame and installed in the chamber. The quartz plate has a rigidity capable of enduring pressure in the bonding process applied to a large sized substrate, and the apparatus provides for convenient replacement of the quartz plate.
Abstract:
A field emitter array, and a method for manufacturing the same are provided. The field emitter array comprises a nickel substrate, and a plurality of nano-pillars extending perpendicular to the nickel substrate. Each of the nano-pillars comprises a nickel nano-pillar body integrated to the nickel substrate and extending perpendicular to the nickel substrate, and an upper portion of the nano-pillar comprising a CNT-nickel composite material. At least one CNT is exposed from an upper surface of the upper portion of the nano-pillar. Since the CNTs are provided on the upper surface of the nano-pillars, field emission efficiency can be further enhanced. Additionally, since the substrate, and the nano-pillars extending perpendicular to the substrate are integrated and formed of the same material, contact resistance between the substrate and the nano-pillars is reduced, thereby enhancing the field emission efficiency.
Abstract:
An apparatus and method for a handover in a mobile communication system are provided. The handover apparatus includes an interface unit for setting a first path used before the handover and a second path used after the handover, for the mobile terminal undergoing the handover. A controller determines whether or not data to be transmitted to the mobile terminal is real-time data upon receipt of the data, transmits the data to the mobile terminal through the first and second paths when it is determined to be real-time data, and buffers the data and transmits the buffered data to the mobile terminal through the second path after completion of the handover when it is determined not to be real-time data. A buffer stores the buffered data until the handover is completed.
Abstract:
A liquid crystal display device, including: a gate line on a substrate; a data line crossing the gate line with a gate insulating film therebetween to define a pixel area; a thin film transistor connected to the gate line and the data line; a semiconductor pattern which forms a channel of the thin film transistor and overlaps along the data line; a passivation film covering the data line and the thin film transistor; and a pixel electrode on the gate insulating film in a pixel hole of the pixel area that penetrates the passivation film and connected to the thin film transistor, the pixel electrode on an inclined side surface of the passivation film to encompass the pixel hole, to form a border with the passivation film and having a thickness that decreases as it goes up the side surface of the passivation film.