Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of Neighbor Awareness Networking (NAN) Geo-Fencing. For example, an apparatus may include circuitry configured to cause a Neighbor Awareness Networking (NAN) device to process a plurality of geo-fencing parameters of a geofence from an application on the NAN device; and perform geo-fencing with another NAN device based on the geo-fencing parameters.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of determining one or more link adaptation parameters. For example, an apparatus may be configured to process a first message from a wireless station, the first message including location information corresponding to a location of the wireless station, and an Access Point (AP) identifier to identify an AP; to query a Location-Based Link Status (LB-LS) database (DB) for radio link information corresponding to the AP and to the location; to determine, based on the radio link information, one or more link adaptation parameters corresponding to a wireless link between the AP and the wireless station at the location; and to send to the wireless station a second message comprising the one or more link adaptation parameters.
Abstract:
An access point (AP), station (STA) and method of providing synchronizing the STA are generally described. The STA may transmit to the AP a Fine Timing Measurement (FTM) request and/or trigger frame. The STA may capture a STA Time Synchronization Function (TSF) value of the time the FTM request/trigger frame is transmitted to the AP as determined by the STA. The AP may determine an AP TSF value of the time the of the FTM request/trigger frame was transmitted by the AP as determined by the AP and transmit at least part of the AP TSF time to the STA in a FTM response frame. The STA may compare the STA TSF value and the AP STA value and adjust the STA TSF dependent on the difference between the AP TSF value and the STA TSF value to synchronize to the AP TSF value.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of performing a Time of Flight (ToF) measurement. For example, a first wireless device may include a radio to communicate a discovery frame with a second wireless device, the discovery frame including an initiator indication to indicate whether a sender of the discovery frame is to be an initiator or a responder of a Time of Flight (ToF) measurement procedure, and availability information to indicate a wireless channel and one or more time intervals; and a controller to perform the ToF measurement procedure with the second wireless device over the wireless channel during the one or more time intervals, the controller be either the initiator or responder of the ToF measurement according to the initiator indication.
Abstract:
Embodiments of an access point (AP), a user station (STA), and a method for range estimation in a wireless network are generally described herein. For example, the AP may encode a common information field of a first trigger frame to include a trigger frame type configured to check the readiness of associated and unassociated STAs. The AP may transmit the first trigger frame to STAs and receive feedback from the STAs. The AP may further encode, based on the feedback, a common information field of a second trigger frame to include one of: a trigger frame type that solicits negotiation packets from associated and unassociated STAs using an association identifier (AID) and a pre-AID; or a trigger frame type that solicits channel sounding packets from associated and unassociated STAs using an AID and a pre-AID. The AP may further transmit the second trigger frame to the STAs.
Abstract:
This disclosure describes systems, methods, and devices related to a bidirectional location measurement report (LMR) feedback. A responding device may determine a first location measurement report (LMR) feedback type of an initiating device. The responding device may determine a second LMR feedback type of the responding device. The responding device may determine a common availability window, defined by a common start time and a common end time, for an exchange of a first LMR and a second LMR, wherein the common availability window is based on the first LMR feedback type and on the second LMR feedback type. The responding device may cause to send the first LMR to the initiating device during the common availability window. The responding device may identify the second LMR received from the initiating device during the common availability window.
Abstract:
Methods, apparatuses, and computer readable media for location measurement reporting in a wireless network are disclosed. An apparatus of an initiator station (ISTA), where the apparatus comprises processing circuitry configured to encode a null data packet announce (NDPA) frame for transmission to a responder station (RSTA), the NDPA frame indicating a sounding sequence number, and encode a first null data packet (NDP) for transmission at a time T1 to the RSTA. The processing circuitry may be further configured to: decode a second NDP, the second NDP received from the RSTA, wherein the second NDP is received at a time T4, and decode a first location measurement report (LMR). The processing circuitry may be further configured to in response to an ISTA-to-RSTA LMR feedback agreement between the RSTA and ISTA indicating the ISTA is to send a second LMR, encode a second LMR.
Abstract:
Methods, apparatus, and computer-readable media are described to encode a trigger frame for a second station (STA2). A first sounding frame for the STA2 is generated. The first timestamp is associated with a transmission of the first sounding frame. A second sounding frame from the STA2 based upon the first sounding frame is decoded. The second sounding frame includes a holding time indication associated with a second timestamp and a third timestamp. A fourth timestamp is associated with receiving the second sound frame. The holding time indication is protected. A round-trip time is calculated based upon the first timestamp, the holding time indication, and the fourth timestamp.
Abstract:
Methods, apparatuses, and computer-readable medium are described for doing fine timing measurements for one or more stations. A trigger frame is encoded for stations. Uplink null data packets are received. A time of arrival for the UP NDP and a time of departure for a downlink null data packet are determined. The time of arrival and time of departure are encoded into a data packet, such as a downlink null data packet announcement. A wireless device is configured to transmit the data packet to a station.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of Multi User (MU) resource allocation. For example, an apparatus may include circuitry and logic configured to cause a wireless station to transmit a short feedback trigger frame including a first allocation of opportunities for short feedback from associated stations, and a second allocation of opportunities for short feedback from unassociated stations; to process a plurality of short feedbacks from a plurality of stations according to the first and second allocations, the plurality of short feedbacks to indicate uplink resource requests; based on the plurality of short feedbacks, to transmit a MU trigger frame to allocate uplink resources to the plurality of stations; and to process uplink transmissions from the plurality of stations according to the uplink resources.