Abstract:
Embodiments of the present invention disclose a method and an apparatus for detecting an ONU, and a passive optical network system. The method includes detecting an identity code of an ONU in an open uplink empty window or an empty timeslot, and determining that an ONU corresponding to the identity code of the ONU is a rogue ONU according to the identity code of the ONU. A corresponding apparatus and passive optical network system are also provided in the embodiments of the present invention. In the passive optical network system, a rogue ONU is detected and determined quickly and efficiently, and an effect on an uplink service is reduced.
Abstract:
Embodiments of this application disclose an optical network unit and a PoE power supply system. The optical network unit in embodiments of this application includes a conductive connection terminal, a switch module, a network transformer, a first voltage conversion module, and a network interface connector. The conductive connection terminal is configured to be connected to a power over Ethernet PoE power supply device, and the conductive connection terminal is connected to the network transformer.
Abstract:
An information processing apparatus includes: a decoding module, configured to receive M first codewords from at least one peer device, where each first codeword includes first service data with a K-unit length and an error correction code with an R-unit length, where the decoding module is further configured to decode the M first codewords to obtain M second codewords, where a length of each second codeword is a sum of the K-unit length and the R-unit length, each second codeword includes second service data with the K-unit length and error correction information, the second service data is error-corrected first service data; and a classification and statistics collection module, configured to determine a bit error rate of the first service data based on the error correction information.
Abstract:
An optical receiver is disclosed, including an optoelectronic detector, a transimpedance amplification (TIA) circuit, a single-ended-to-differential converter, an I/O interface, and a controller. The optoelectronic detector, having bandwidth lower than required system transmission bandwidth, converts an optical signal into a current signal. The TIA circuit compensate gain for the received current signal based on a received control signal, to obtain a voltage signal, where a frequency response value of the current signal within first bandwidth is greater than that within the bandwidth of the optoelectronic detector, and any frequency in the first bandwidth is not lower than an upper cut-off frequency of the optoelectronic detector. The single-ended-to-differential converter converts the voltage signal into a differential voltage signal. The I/O interface outputs the differential voltage signal. The controller generates the control signal based on the differential voltage signal. The optical receiver disclosed can reduce costs while ensuring signal quality.
Abstract:
A method for detecting an optical network unit (ONU) in a passive optical network (PON), an ONU, a PON and an optical line terminal (OLT) are disclosed. In an embodiment the method include detecting an ONU identity code in an open uplink empty window or an empty timeslot, wherein the ONU identity code is a specific code stream sequence of the ONU that identifies a single ONU of the plurality of ONUs included in the PON system during the open uplink empty window or the empty timeslot and determining that the single ONU corresponding to the ONU identity code is a rogue ONU according to the ONU identity code.
Abstract:
Embodiments of the present invention disclose a method and an apparatus for detecting an ONU, and a passive optical network system. The method includes detecting an identity code of an ONU in an open uplink empty window or an empty timeslot, and determining that an ONU corresponding to the identity code of the ONU is a rogue ONU according to the identity code of the ONU. A corresponding apparatus and passive optical network system are also provided in the embodiments of the present invention. In the passive optical network system, a rogue ONU is detected and determined quickly and efficiently, and an effect on an uplink service is reduced.
Abstract:
An apparatus and a method for detecting an uplink optical signal. The apparatus includes a memory and a processor, where the processor is configured to determine a remaining bandwidth in a target uplink frame as a test window, where the remaining bandwidth in the target uplink frame indicates an unallocated bandwidth in the target uplink frame, and detect an uplink optical signal in the determined test window. Therefore, a remaining bandwidth obtained after bandwidth allocation in a target uplink frame is used to detect an uplink optical signal, which can effectively use a resource without the need of independently opening a test window and using an extra resource to detect the uplink optical signal, thereby avoiding waste of a resource and improving test efficiency.