Abstract:
An optical fiber connector includes a main body (1), a sleeve (2), and a plug (3).The main body (1) includes a first cube and a second cube that are formed by means of injection molding, where a first cavity (1o) is disposed inside the first cube, and the first cavity (1o) is used to adapt to an optical fiber sub-assembly inserted from a first end face of the first cube; at least two hook-like structures (1n) are formed, by means of injection molding, on the first cube extending from a second end face that is parallel to the first end face into the first cavity (1o), and the hook-like structures (1n) are used to tightly lock the optical fiber sub-assembly when the optical fiber sub-assembly is inserted from the first end face.
Abstract:
This application provides a receiver optical sub-assembly, a bi-directional optical sub-assembly, and an optical network device to improve anti-electromagnetic crosstalk performance of the receiver optical sub-assembly. The receiver optical sub-assembly includes: a photodiode, a trans-impedance amplifier, and a first filter component. The photodiode is configured to convert an optical signal into an electrical signal, a positive electrode of the photodiode is connected to an input terminal of the trans-impedance amplifier, and a negative electrode of the photodiode is configured to connect to a power supply. The trans-impedance amplifier is configured to amplify the electrical signal output by the photodiode, a power terminal of the trans-impedance amplifier is configured to connect to a power supply, and a first ground terminal of the trans-impedance amplifier is configured to connect to an external ground.
Abstract:
An optical fiber connector includes a main body (1), a sleeve (2), and a plug (3). The main body (1) includes a first cube and a second cube that are formed by means of injection molding, where a first cavity (1o) is disposed inside the first cube, and the first cavity (1o) is used to adapt to an optical fiber sub-assembly inserted from a first end face of the first cube; at least two hook-like structures (1n) are formed, by means of injection molding, on the first cube extending from a second end face that is parallel to the first end face into the first cavity (1o), and the hook-like structures (1n) are used to tightly lock the optical fiber sub-assembly when the optical fiber sub-assembly is inserted from the first end face.
Abstract:
An optical receiver is disclosed, including an optoelectronic detector, a transimpedance amplification (TIA) circuit, a single-ended-to-differential converter, an I/O interface, and a controller. The optoelectronic detector, having bandwidth lower than required system transmission bandwidth, converts an optical signal into a current signal. The TIA circuit compensate gain for the received current signal based on a received control signal, to obtain a voltage signal, where a frequency response value of the current signal within first bandwidth is greater than that within the bandwidth of the optoelectronic detector, and any frequency in the first bandwidth is not lower than an upper cut-off frequency of the optoelectronic detector. The single-ended-to-differential converter converts the voltage signal into a differential voltage signal. The I/O interface outputs the differential voltage signal. The controller generates the control signal based on the differential voltage signal. The optical receiver disclosed can reduce costs while ensuring signal quality.
Abstract:
The present invention provides a method for information exchange in an access network, an apparatus, and a system, and relates to the communications field. The method includes: receiving, by an access device, a configuration command from a network management server; converting the configuration command into an OpenFlow-protocol-based openflow message; and sending the openflow message to a terminal device, so that the terminal device configures an openflow flow table according to the openflow message.
Abstract:
The present disclosure relates to optical receivers. One example optical receiver includes an optoelectronic detector, a transimpedance amplification (TIA) circuit, a single-ended-to-differential converter, an I/O interface, and a controller. The optoelectronic detector, having bandwidth lower than required system transmission bandwidth, converts an optical signal into a current signal. The TIA circuit compensates gain for the received current signal based on a received control signal to obtain a voltage signal, where a frequency response value of the current signal within first bandwidth is greater than that within the bandwidth of the optoelectronic detector, and any frequency in the first bandwidth is not lower than an upper cut-off frequency of the optoelectronic detector. The single-ended-to-differential converter converts the voltage signal into a differential voltage signal. The I/O interface outputs the differential voltage signal. The controller generates the control signal based on the differential voltage signal.
Abstract:
An optical receiver is disclosed, including an optoelectronic detector, a transimpedance amplification (TIA) circuit, a single-ended-to-differential converter, an I/O interface, and a controller. The optoelectronic detector, having bandwidth lower than required system transmission bandwidth, converts an optical signal into a current signal. The TIA circuit compensate gain for the received current signal based on a received control signal, to obtain a voltage signal, where a frequency response value of the current signal within first bandwidth is greater than that within the bandwidth of the optoelectronic detector, and any frequency in the first bandwidth is not lower than an upper cut-off frequency of the optoelectronic detector. The single-ended-to-differential converter converts the voltage signal into a differential voltage signal. The I/O interface outputs the differential voltage signal. The controller generates the control signal based on the differential voltage signal. The optical receiver disclosed can reduce costs while ensuring signal quality.