Abstract:
Embodiments of the present invention provide a data transmission processing method, apparatus, and system. The method includes: receiving, by a first base station, an adjustment parameter transmitted by a terminal, where the adjustment parameter is obtained by the terminal according to reference signals separately transmitted by the first base station and a second base station; performing, by the first base station and according to the adjustment parameter, channel compensation on a first channel between the first base station and the terminal to obtain a second channel; and transmitting, by the first base station, a first signal over the second channel to the terminal, so that the terminal obtains the first signal from a mixed signal of the first signal and a second signal that is transmitted by the second base station.
Abstract:
A channel estimation method includes: obtaining a self-interference channel estimation value of an ith moment and a communication channel estimation value of the ith moment, the i being greater than or equal to 0; obtaining a local end transmitting signal of the ith moment; obtaining an opposite end transmitting signal estimation value of the ith moment; and according to the self-interference channel estimation value of the ith moment, the communication channel estimation value of the ith moment, the local end transmitting signal of the ith moment and the opposite end transmitting signal estimation value of the ith moment, obtaining the self-interference channel estimation value and communication channel estimation value of an i+1 moment, and the i+1 moment differing from the i moment by 1 unit of time.
Abstract:
The embodiments of present disclosure provide a method for estimating a response of a baseband self-interference channel and an apparatus, where the method includes: estimating a response of a baseband self-interference channel to obtain a first estimation response of the baseband self-interference channel; starting to perform first full duplex communication; canceling baseband self-interference in a first baseband received signal according to the first estimation response, where the first baseband received signal is a baseband signal received during the first full duplex communication; determining a first parameter of the baseband self-interference channel; determining an estimation policy of the baseband self-interference channel according to the first parameter; and estimating the response of the baseband self-interference channel according to the estimation policy.
Abstract:
A method and a device for communication mode switching are provided in embodiment of the present disclosure. The method includes: acquiring at least one candidate communication mode for switching according to a preset channel quality condition, where the channel quality condition is met under the candidate communication mode for switching; evaluating each of the at least one candidate communication mode for switching according to a switch criterion and acquiring an evaluation value of each of the at least one candidate communication mode for switching; and ranking the evaluation value of the at least one candidate communication mode for switching in an ascending order or a descending order and switching a communication system from a current communication mode to a candidate communication mode for switching corresponding to an evaluation value ranked as the first.
Abstract:
The present embodiments relate to the field of communications, and discloses a signal processing method and apparatus, which can implement self-interference cancellation when in-phase quadrature (IQ) imbalance exists in a communications system. An embodiment is acquiring, a digital baseband reference signal, a self-interference reference signal, and a frequency-domain baseband signal. The method also includes obtaining, according to the digital baseband reference signal, a basic reference signal and an image reference signal that are image to each other and estimating an estimated value of a first comprehensive response and an estimated value of a second comprehensive response according to the basic reference signal, the image reference signal, and the self-interference reference signal. Additionally, the method includes calculating a self-interference signal according to the estimated value of the first comprehensive response, the estimated value of the second comprehensive response, the basic reference signal, and the image reference signal, so as to perform self-interference cancellation on the frequency-domain baseband signal.
Abstract:
The present invention provides a new system structure of mobile cellular system based on layered cloud computing. A core network part of the system structure includes a CRG node, and an access network part includes an MC node and a DU node. The system structure proposed in the present invention is compatible with all conventional mobile air interface protocols, supports the layered cloud computing function, and is capable of providing joint signal processing and joint scheduling, flexibly allocating computing resources among nodes, and compressing the structure of the core network, so that larger network data throughput can be provided for users with lower deployment cost.
Abstract:
Embodiments of the present invention provide a method, an apparatus, and a system for interference alignment. The method includes: receiving signals transmitted by transmit ends, where the signals include interference signals and a wanted signal; aligning original constellation diagrams of the interference signals to acquire a first interference aligned constellation diagram; performing, according to the first interference aligned constellation diagram, interference signal demodulation and decoding on the received signals to acquire an interference source bit sequence; performing, according to the interference source bit sequence and the first interference aligned constellation diagram, interference reconstruction and removal to acquire a second interference aligned constellation diagram; and performing, according to the second interference aligned constellation diagram, wanted signal demodulation and decoding on the signal sequence to acquire the wanted signal transmitted by a wanted signal transmit end. The embodiments of the present invention are applicable to radio communications.
Abstract:
A WLAN coordinated data transmission method, system, and relevant device are disclosed. The WLAN coordinated data transmission method includes: detecting, by an offloading scheduling controller, whether the number of MAC SDUs buffered in a MAC SDU queue of a mobile communication module exceeds a preset threshold, and, if so, packing a part of the MAC SDUs into a MAC PDU, and sending the MAC PDU to a coordination mode management module through an interface of the mobile communication module; sending, by the coordination mode management module, the MAC PDU containing the packed part of the MAC SDUs through an LLC protocol layer to a WLAN module for transmission; and packing, by the offloading scheduling controller, a remaining part of the MAC SDUs buffered in the MAC SDU queue into a MAC PDU, and transmitting the MAC PDU through the mobile communication module.
Abstract:
The present invention provides a new system structure of mobile cellular system based on layered cloud computing. A core network part of the system structure includes a CRG node, and an access network part includes an MC node and a DU node. The system structure proposed in the present invention is compatible with all conventional mobile air interface protocols, supports the layered cloud computing function, and is capable of providing joint signal processing and joint scheduling, flexibly allocating computing resources among nodes, and compressing the structure of the core network, so that larger network data throughput can be provided for users with lower deployment cost.
Abstract:
Embodiments of the present invention provide a data transmission processing method, apparatus, and system. The method includes: receiving, by a first base station, an adjustment parameter transmitted by a terminal, where the adjustment parameter is obtained by the terminal according to reference signals separately transmitted by the first base station and a second base station; performing, by the first base station and according to the adjustment parameter, channel compensation on a first channel between the first base station and the terminal to obtain a second channel; and transmitting, by the first base station, a first signal over the second channel to the terminal, so that the terminal obtains the first signal from a mixed signal of the first signal and a second signal that is transmitted by the second base station.