Abstract:
An EUV light generation system includes a processor controlling an actuator which changes an irradiation position of laser light on a target. The processor executes a first control of acquiring a value of a first index related to output values of EUV energy sensors, acquiring a value of a second index related to a ratio of the output values of the EUV energy sensors, and controlling the actuator based on the value of the first index; and a second control of, during the first control, controlling the actuator to move the irradiation position of the laser light in a direction for causing the value of the second index not to exceed a vibration threshold when the value of the second index has exceeded the vibration threshold which reflects a vibration occurrence irradiation position being the irradiation position at which the EUV energy temporally vibrates due to the buffer gas.
Abstract:
An extreme ultraviolet light generation apparatus includes a target supply unit, a target passage detection device, a delay circuit, a laser device, a target image capturing device, and a processor. Here, the processor controls the vibrating element to provide irregular intervals between droplet targets adjacent to each other; generates integrated image data by integrating plural pieces of image data imaged at different times; specifies a position, in the integrated image data, of the droplet target most emphasized in the integrated image data; and sets a delay time based on a distance from a position of the most emphasized droplet target to a second detection position.
Abstract:
A laser apparatus includes: a plurality of envelope blocks each provided with an optical element and a first temperature sensor and covering part of a laser beam path, the optical element being disposed on the laser beam path, the first temperature sensor being configured to measure a first temperature of gas at a position away from the optical element; an envelope body including the envelope blocks and covering the laser beam path; and a control unit connected with each first temperature sensor and configured to specify an envelope block at which increase of the first temperature is measured in the envelope body as an envelope block at which anomaly is occurring.
Abstract:
An extreme ultraviolet light generating apparatus includes a light collecting mirror that reflects and focuses extreme ultraviolet light, and a magnet that generates a magnetic field. The light collecting mirror includes a first mirror portion that includes a first reflective surface formed by a portion of a spheroidal surface, and a second mirror portion that includes a second reflective surface having a focal point at substantially the same position as a focal point of the first reflective surface, formed by a portion of a spheroidal surface different from that of the first reflective surface. The second reflective surface is provided at a position at which a magnetic flux density caused by the magnetic field is lower than that of the first reflective surface.
Abstract:
An extreme ultraviolet light generation device is to generate extreme ultraviolet light by irradiating a target with a pulse laser beam and thereby turning the target into plasma. The device may include a chamber, a magnet configured to form a magnetic field in the chamber, and an ion catcher including a collision unit disposed so that ions guided by the magnetic field collide with the collision unit.
Abstract:
An extreme ultraviolet light generating apparatus includes a laser device, a target detector, and a controller. The laser device emits a pulsed laser beam. The target detector detects a target substance supplied as an application target for the laser beam to the inside of a chamber. The controller controls the laser device based on a burst signal in which a burst period and an idle period are repeated. In the burst period, an extreme ultraviolet light beam has to be generated. In the idle period, the generation of the extreme ultraviolet light beam has to be paused. When a size of a target substance detected at the target detector in the idle period is greater than a predetermined size, the controller may reduce an intensity of a laser beam entering the inside of the chamber from the laser device.
Abstract:
An extreme ultraviolet light generation system may comprise a chamber, a target supply unit configured to supply, to a predetermined region in the chamber, a target having an atomic density of 8.0×1017 atoms/cm3 or higher and 1.3×1018 atoms/cm3 or lower, and a laser apparatus configured to irradiate the predetermined region with a pulse laser beam having an energy density of 10.5 J/cm2 or higher and 52.3 J/cm2 or lower in the predetermined region.
Abstract:
An extreme ultraviolet light generation device may be configured to generate extreme ultraviolet light by irradiating a target with a laser beam to turn the target into plasma. The extreme ultraviolet light generation device may comprise: a chamber provided with at least one through-hole; an optical system configured to introduce the laser beam into a predetermined region in the chamber through the at least one through-hole; and a target supply device configured to supply a powder target as the target to the predetermined region.
Abstract:
A control method for a target supply device may employ a target supply device, provided in an EUV light generation apparatus including an image sensor, that includes a target generator having a nozzle and configured to hold a target material and a pressure control unit configured to control a pressure within the target generator, and the method may include outputting the target material in the target generator from a nozzle hole in the nozzle by pressurizing the interior of the target generator using the pressure control unit, determining whether or not a difference between an output direction of the target material outputted from the nozzle hole that is detected by the image sensor and a set direction is within a predetermined range, and holding the pressure in the target generator using the pressure control unit until the difference falls within the predetermined range.
Abstract:
A control method for a target supply device includes melting a target material by heating the target material within a target generator using a heating unit, pushing out the target material from a nozzle hole in a nozzle by pressurizing the interior of the target generator using a pressure control unit, determining whether or not the size of an adhering area of the target material that forms when the target material is pushed out from the nozzle hole and adheres to a leading end of the nozzle has reached a set size that covers the entire nozzle hole, stopping the pressurization of the interior of the target generator by the pressure control unit when the size of the adhering area has reached the set size, and hardening the target material in the target generator and the adhering area by stopping the heating of the target material by the heating unit.