Abstract:
A method includes receiving, at a data hub onboard an asset, a new configuration file, a service program, and a software update of a software application of the asset from a remote location. The data hub includes a current configuration file that indicates a current configuration state of the software application. The new configuration file indicates an updated configuration state of the software application with the software update. The service program includes work instructions for applying the updated configuration state to the software application. The method includes displaying the current configuration file and the new configuration file onboard the asset using the data hub. The method also includes updating the software application with the updated configuration state according to the work instructions of the service program using the data hub.
Abstract:
A system is provided for controlling a powered unit having an engine configured to operate using a plurality of fuel types each in a corresponding fuel tank. The system includes a controller operable to transmit a first set of control signals including a first set of valve signals to the each fuel tank based at least in part on a first stored engine operating profile to control amounts of fuel from each fuel tank to the engine. The controller can transmit a second set of control signals including a second set of valve signals to each fuel tank based at least in part on a second stored engine operating profile to control amounts of fuel from each fuel tank to the engine. Further, the controller can switch, by transmitting either the first set of control signals or the second set of control signals, between a first operating condition associated with a first external domain and a second condition associated with a second external domain. The first operating condition is associated with the first stored engine operating profile, and the second operating condition is associated with the second stored engine operating profile.
Abstract:
A locomotive communication system includes a wireless communication device and a controller that controls operation of the wireless communication device. The controller directs the wireless communication device to switch between operating in an off-board communication mode and operating in an onboard communication mode. The wireless communication device communicates a remote data signal with an off-board location while the wireless communication device is operating in the off-board communication mode and the wireless communication device communicates a local data signal between the propulsion-generating vehicles of the vehicle system while the wireless communication device is operating in the onboard communication mode.
Abstract:
A system includes a first controller, a data acquisition device, a friction modification unit, and a friction management controller. The first controller is configured to obtain an operational setting for a vehicle, and to output a first signal relating to the operational setting for controlling the vehicle. The data acquisition device is configured to obtain operational data of the vehicle as the vehicle travels, and to provide the operational data to the first controller. The first controller is configured to obtain a difference between the operational data and the operational setting, and to adjust the first signal based on the difference. The friction modification unit is configured to modify a friction characteristic of a surface of the route. The friction management controller is configured to direct the friction modification unit to modify the friction characteristic of the surface of the route based on the operational setting.
Abstract:
A system and method control a powered system having an engine configured to operate using a plurality of fuel types. A first set of control signals including a first set of valve signals are communicated to each fuel tank based at least in part on a first stored engine operating profile to control amounts of fuel provided from each fuel tank to the engine. A different, second set of control signals including a second set of valve signals are communicated to the fuel tanks based at least in part on a second stored engine operating profile to control or change the amounts of fuel from each fuel tank to the engine. The system and method can switch between operating conditions associated with different external domains to alter the engine operating profile used to control the fuel or fuels supplied to the engine.
Abstract:
A system and method for examining a route and/or vehicle system obtain a route parameter and/or a vehicle parameter from discrete examinations of the route and/or the vehicle system. The route parameter is indicative of a health of the route over which the vehicle system travels. The vehicle parameter is indicative of a health of the vehicle system. The discrete examinations of the route and/or the vehicle system are separated from each other by location and/or time. The route parameter and/or the vehicle parameter are examined to determine whether the route and/or the vehicle system is damaged and, responsive to determining that the route and/or the vehicle is damaged, the route and/or the vehicle system are continually monitored, such as by examination equipment onboard the vehicle system.
Abstract:
System including a switch control module that is configured to control operation of a first contactor and a second contactor in a vehicle system. The first and second contactors are configured to selectively connect front-end and direct-current (DC) buses, respectively, to an energy storage system of the vehicle system. The front-end bus is configured to receive electrical power from an external power source and provide the electrical power to a converter device. The converter device is configured to supply DC power to the DC bus. The switch control module is configured to close the second contactor when the vehicle system is operably coupled to the external power source so that the energy storage system is charged by the DC power. The switch control module is configured to close one of the first contactor or the second contactor when the vehicle system is operably decoupled to the external power source.
Abstract:
A method includes determining a state of operational devices in a second group coupled with a second router onboard a second vehicular unit of a vehicle consist, registering an operational device in the second group based on the determined state, and transmitting a data message from an operational device in a first group of operational devices to the second router via a first router and a communication pathway of the vehicle consist. The first group is coupled with the first router onboard a first vehicular unit. The operational devices in the first and second groups perform functions of the respective first vehicular unit and second vehicular unit. The first and second routers are connected with each other by the communication pathway. The method also includes communicating the data message to the at least one of the operational devices in the second group that are registered with the second router.