Abstract:
A vehicle control system controls operation of motors of a vehicle and determines whether there is sufficient stored electric energy to power the vehicle through an unpowered segment of a route. The controller changes operation of the vehicle to ensure that the vehicle can travel completely through the unpowered segment by switching which energy storage device provides energy, changing vehicle speed, changing motor torque, changing which route is traveled on, selecting fewer motors to power the vehicle, requesting rendezvous with a recharging vehicle, running the energy storage devices in a degraded mode, initiating a motor to generate power to aid in propulsion and/or recharge the energy storage devices, selecting a different route, controlling the vehicle to draft or mechanically couple to another vehicle, and/or controlling the vehicle to gain momentum or to generate an overcharge.
Abstract:
A body coil support structure includes an elongate support member. The elongate support member defines an opening and an examination axis passing through the opening along a length of the elongate support member. The opening is configured to accept an object to be imaged. The elongate support member has a target shape for use during operation of the MRI system, with the elongate support member configured to be subjected to an operational load during operation. In a design state, the elongate support member defines a design shape, with the elongate support member not subjected to the operational load in the design state. In an installed state after installation in the MRI system, the elongate support member defines an operational shape. The elongate support member is subjected to the operational load in the installed state. The operational shape is closer to the target shape than is the design shape.
Abstract:
A vehicle control system controls operation of motors of a vehicle and determines whether there is sufficient stored electric energy to power the vehicle through an unpowered segment of a route. The controller changes operation of the vehicle to ensure that the vehicle can travel completely through the unpowered segment by switching which energy storage device provides energy, changing vehicle speed, changing motor torque, changing which route is traveled on, selecting fewer motors to power the vehicle, requesting rendezvous with a recharging vehicle, running the energy storage devices in a degraded mode, initiating a motor to generate power to aid in propulsion and/or recharge the energy storage devices, selecting a different route, controlling the vehicle to draft or mechanically couple to another vehicle, and/or controlling the vehicle to gain momentum or to generate an overcharge.
Abstract:
A method includes determining an operational parameter of a first vehicle traveling with a plurality of vehicles in a transportation network and/or a route in the transportation network, identifying a failure condition of the first vehicle and/or the route based on the operational parameter, obtaining plural different sets of remedial actions that dictate operations to be taken based on the operational parameter, simulating travel of the plurality of vehicles in the transportation network based on implementation of the different sets of remedial actions, determining potential consequences on travel of the plurality of vehicles in the transportation network when the different sets of remedial actions are implemented in the travel that is simulated, and based on the potential consequences, receiving a selection of at least one of the different sets of remedial actions to be implemented in actual travel of the plurality of vehicles in the transportation network.
Abstract:
A method for controlling a vehicle system includes determining when the vehicle system approaches an airflow restricted area and distributing a total power output of the vehicle system among first and second vehicles of the vehicle system. The total power output is distributed by directing the first vehicle to decrease power output relative to a power output generated by the second vehicle and/or by directing the second vehicle to increase power output relative to the power output generated by the first vehicle. The method includes monitoring the power output of the second vehicle during travel of the vehicle system in the airflow restricted area to determine when the second vehicle derates and redistributing the total power output of the vehicle system among the at vehicles as the vehicle system travels in the airflow restricted area and responsive to the second vehicle derating.
Abstract:
A system is provided for operating a railway network including a first railway vehicle during a trip along track segments. The system includes a first element for determining travel parameters of the first railway vehicle, a second element for determining travel parameters of a second railway vehicle relative to the track segments to be traversed by the first vehicle during the trip, a processor for receiving information from the first and the second elements and for determining a relationship between occupation of a track segment by the second vehicle and later occupation of the same track segment by the first vehicle and an algorithm embodied within the processor having access to the information to create a trip plan that determines a speed trajectory for the first vehicle. The speed trajectory is responsive to the relationship and further in accordance with one or more operational criteria for the first vehicle.
Abstract:
A system and method for examining a route and/or vehicle system obtain a route parameter and/or a vehicle parameter from discrete examinations of the route and/or the vehicle system. The route parameter is indicative of a health of the route over which the vehicle system travels. The vehicle parameter is indicative of a health of the vehicle system. The discrete examinations of the route and/or the vehicle system are separated from each other by location and/or time. The route parameter and/or the vehicle parameter are examined to determine whether the route and/or the vehicle system is damaged and, responsive to determining that the route and/or the vehicle is damaged, the route and/or the vehicle system are continually monitored, such as by examination equipment onboard the vehicle system.
Abstract:
A locomotive control system includes a mobile platform that moves under remote and/or autonomous control, a sensor package supported by the mobile platform that obtains information relating to a component of a railroad, and one or more processors that receive the sensor information and analyze the information in combination with other information that is not obtained from the sensor package. The processors also generate an output that displays information relating to one or more of a status, a condition, and/or a state of health of the component of the railroad; initiates an action to change an operational state of the component; identifies a hazard to one or more locomotives traveling within the railroad; and/or collects the information relating to the component. Optionally, the component is not communicatively coupled to an information network and the mobile platform provides the information obtained by the sensor package to the information network.
Abstract:
A vehicle control system includes a controller that communicates between a first vehicle and a second vehicle and/or a monitoring device in a vehicle system. The controller determines a communication loss and, responsive to determining the communication loss, switches to communicating via a different communication path. The controller also determines an operational restriction on movement of the vehicle system based on the communication loss that is determined, obtains a transitional plan that designates operational settings of the vehicle system at one or more different locations along a route being traveled by the vehicle system, different distances along the route being traveled by the vehicle system, and/or different times. The controller automatically changes the movement of the vehicle system according to the operational settings designated by the transitional plan to reduce the movement of the vehicle system to or below the operational restriction.
Abstract:
A method includes determining an operational parameter of a first vehicle traveling with a plurality of vehicles in a transportation network and/or a route in the transportation network, identifying a failure condition of the first vehicle and/or the route based on the operational parameter, obtaining plural different sets of remedial actions that dictate operations to be taken based on the operational parameter, simulating travel of the plurality of vehicles in the transportation network based on implementation of the different sets of remedial actions, determining potential consequences on travel of the plurality of vehicles in the transportation network when the different sets of remedial actions are implemented in the travel that is simulated, and based on the potential consequences, receiving a selection of at least one of the different sets of remedial actions to be implemented in actual travel of the plurality of vehicles in the transportation network.