Abstract:
Systems and methods for monitoring components are provided. A component has an exterior surface. A method includes projecting structured light onto a predetermined location on the exterior surface of the component. The structured light is emitted from a structured light emitter. The method further includes detecting the structured light after the structured light is reflected by the exterior surface. The method further includes calculating at least one characteristic of the detected structured light.
Abstract:
The invention relates generally to the measurement and dimensional analysis of an object and, more particularly, to the correction of distortion in volumetric data of the object using dimensional data of the object. In one embodiment, the invention provides a method of analyzing an object, the method comprising: acquiring volumetric data of an object using an X-ray computed tomography (CT) imaging system; acquiring dimensional data of the object using a vision-based system; determining whether the volumetric data include a distortion; and in the case that the volumetric data are determined to include a distortion, correcting the distortion in the volumetric data using the dimensional data.
Abstract:
A lift efficiency improvement mechanism is provided for use with a service wedge configured to be removably installed in an access slot of a turbine casing. The lift efficiency improvement mechanism includes a connector element, which is connectable with the turbine casing proximate to the access slot and a manually transportable lift efficiency improvement device, which is supportably coupled to the connector element and movably coupled to the service wedge. The lift efficiency improvement device is configured to urge the service wedge to move relative to the access slot responsive to corresponding operator control movement.
Abstract:
This disclosure provides systems and methods for in situ gap inspection in a machine, such as a generator, an electric motor, or a turbomachine, with an end region. A robotic crawler is configured to navigate an annular gap of the machine. A visual inspection module is connected to the robotic crawler and includes an extension member for extending a camera into the end region to collect visual inspection data.
Abstract:
This disclosure provides systems and methods for in situ gap inspection in a machine, such as a generator, an electric motor, or a turbomachine. A robotic crawler includes an expandable body, multidirectional traction modules, and sensor modules. The expandable body is movable between a collapsed state and an expanded state. The multidirectional traction modules are removably connected to and positioned by the expandable body and configured to engage opposed surfaces within an annular gap of the machine. The sensor modules are removably connected to and supported by the expandable body and include a plurality of sensor types to inspect the annular gap of the machine.
Abstract:
A method for inspecting a component is presented. The method includes inducing, by an inductive coil, an electrical current flow into the component. Further, the method includes capturing, by an infrared (IR) camera, at least a first set of frames and a second set of frames corresponding to the component, wherein the first set of frames is captured at a first time interval and a second set of frames is captured at a second time interval. Also, the method includes constructing, by a processing unit, a thermal image based on at least the first set of frames and the second set of frames corresponding to the component. Furthermore, the method includes determining presence of a thermal signature in the thermal image, wherein the thermal signature is representative of a defect in the component.
Abstract:
A system for monitoring a component is provided. The system may include a strain sensor configured on the component, an electrical field scanner for analyzing the strain sensor, and a processor in operable communication with the electrical field scanner. The processor may be operable for measuring an electrical field value across the strain sensor along a mutually-orthogonal X-axis and Y-axis to obtain a data point set. The processor may further be operable for assembling a field profile of the strain sensor based on the data point set. Methods of using the system are also provided.
Abstract:
A computer-implemented system for enhanced tip-tracking and navigation of visual inspection devices includes a visual inspection device. The system further includes a plurality of spatially sensitive fibers. The system includes a computing device. The computing device includes a memory device and a processor. The system includes a storage device. The storage device includes an engineering model representing the physical asset. The computing device is configured receive an insertion location from the visual inspection device. The computing device is configured to receive fiber information associated with the visual inspection device. The computing device is configured to determine the real-time location of the visual inspection device using the fiber information. The computing device is configured to identify the real-time location of the visual inspection device with respect to the engineering model. The computing device is configured to navigate the visual inspection device from a first location to a second location.
Abstract:
A method for inspecting a wye ring in a generator includes the steps of dismantling the generator to gain access to the wye ring and at least a portion of a rotor, applying a test signal to the rotor and measuring an inductive voltage at two or more locations near the wye ring. A comparing step compares results from the measuring step to determine if a fault exists in the wye ring. A predetermined difference in inductive voltage measurements indicates presence of the fault.
Abstract:
A lift efficiency improvement mechanism is provided for use with a service wedge configured to be removably installed in an access slot of a turbine casing. The lift efficiency improvement mechanism includes a connector element, which is connectable with the turbine casing proximate to the access slot and a manually transportable lift efficiency improvement device, which is supportably coupled to the connector element and movably coupled to the service wedge. The lift efficiency improvement device is configured to urge the service wedge to move relative to the access slot responsive to corresponding operator control movement.