Abstract:
Provided is a receiver. The receiver according to the inventive concept includes a first filter circuit, a second filter circuit, and an amplifier. The first filter circuit provides a first path for first frequency components below first cutoff frequency of input frequency components and passes second frequency components except for the first frequency components of the input frequency components through second path. The second filter circuit attenuates third frequency components below a second cutoff frequency of the second frequency components. The amplifier amplifies the second frequency components including the attenuated third frequency components.
Abstract:
The exemplary embodiments of the present invention provide a quantum random number generation apparatus according to an exemplary embodiment of the present invention including: a space-division semiconductor detector including a plurality of cells, each individually absorbing a plurality of emission particles emitted from a radioactive isotope; and a signal processor that generates a random number based on an absorption event at which the plurality of emission particles are absorbed into the plurality of cells, and thus new type of random number conversion method that combines a spatial randomness and existing temporal randomness of the emission particle can be provided, there is no restriction generated due to the dead time, the random number generation rate can be remarkably increased, and it is possible to generate of a pure random number at high speed, which is required by a computer, a network processor, or an IoT device.
Abstract:
Provided is a capsule endoscope. The capsule endoscope includes: an imaging device configured to perform imaging on a digestive tract in vivo to generate an image; an artificial neural network configured to determine whether there is a lesion area in the image; and a transmitter configured to transmit the image based on a determination result of the artificial neural network.
Abstract:
Disclosed is a network-on-chip including a first data converter that receives first image data and second image data from at least one image sensor and encodes one image data among the first image data and the second image data, into first data, based on whether the first image data is identical to the second image data and a second data converter that receives non-image data from at least one non-image sensor and encodes the received non-image data into second data. The network-on-chip outputs the first data and the second data to transmit the first data and the second data to an external server at a burst length.
Abstract:
Disclosed is a spike neural network circuit, which includes an axon generating a spike input, a synapse performing a weight calculation and generating a membrane signal based on the weight calculation, and a neuron accumulating the membrane signal to generate a spike output, and the neuron includes a firing unit that compares a potential of a membrane node where the membrane signal is accumulated with a reference potential and fires based on the comparison result, membrane capacitors connected to the membrane node, a switch controller that outputs switching signals based on the firing of the firing unit, switches that connects each of membrane capacitors to one of a power supply voltage and a ground voltage in response to the switching signals, and a spike output generator that generates the spike output based on the plurality of switching signals and the firing of the firing unit.
Abstract:
A hybrid communication device, an operation method thereof, and a communication system including the same are provided. The hybrid communication device includes a contact unit that includes an antenna for receiving a first communication signal and an electrode for receiving a second signal, a switch controller that includes a first switch and a second switch and controls the first switch and the second switch based on a change in capacitance of the electrode, and a signal processing unit that receives at least one of the first communication signal and the second communication signal from the contact unit via the first switch and processes the received signal. The first switch is connected to the contact unit, and the signal processing unit is connected to the first switch.
Abstract:
The reception device includes a base member, a first electrode, a second electrode, a differential amplifier, and a circuit board. The base member includes a first surface and a second surface. The first electrode is provided on the first surface and configured to receive a reception signal. The second electrode is provided on the second surface and configured to receive a reference voltage. The differential amplifier is configured to amplify a potential difference between the reception signal and the reference voltage. The circuit board is configured to provide a power voltage and a reference ground to the differential amplifier. A distance between the circuit board and the first electrode is smaller than a distance between the circuit board and the second electrode. According to an embodiment of the inventive concept, the amplification performance of the reception device using a human body as a medium is improved.
Abstract:
Provided are an energy harvesting device capable of generating electric energy by effectively obtaining an electromagnetic wave emitted from an indoor lighting device and a power control system of a lighting device capable of performing self-power generation by using the energy harvesting device as a power source. The energy harvesting device using an electromagnetic wave according to an exemplary embodiment of the present disclosure includes: an interface unit made of a conductive material and configured to capture a conductive interference signal transferred through a conductive member of a lighting device; and a rectifier circuit unit configured to rectify the captured conductive interference signal to convert the rectified conductive interference signal to direct current power.