Abstract:
Provided is an organic light emitting diode including a substrate, a light scattering structure including nano-structures on the substrate, a thin film on the nano-structures, and an air gap between the nano-structures, a planarizing layer covering the thin film and thicker than the thin film, a first electrode on the planarizing layer, an organic emission layer on the first electrode, and a second electrode on the organic emission layer.
Abstract:
Provided is a display device and a method of manufacturing the same. The display device includes a thin film transistor, a first electrode electrically connected to the thin film transistor, a self-light emitting pixel layer disposed on the first electrode, a second electrode disposed on the self-light emitting pixel layer, a substrate in which an auxiliary wire is buried, the substrate being disposed on the second electrode, and a reflective pixel layer disposed on the substrate.
Abstract:
Provided are an electronic device and a fabrication method thereof. The electronic device according to the concept of the present invention includes auxiliary interconnections disposed on a substrate, a light extraction layer that is provided on the substrate and fills between the auxiliary interconnection, and a first electrode provided on the auxiliary interconnections and the light extraction layer, wherein the light extraction layer may have a first surface facing the substrate and a second surface opposite to the first surface, the first surface may have protrusions, and the auxiliary interconnections may include a material having a lower resistance than the first electrode. Since electrical properties of the electronic device are improved, uniform light emission characteristics may be realized.
Abstract:
The inventive concept provides organic light emitting diodes and methods of manufacturing an organic light emitting diode. The organic light emitting diode includes a substrate, a first electrode layer and a second electrode layer formed on the substrate, an organic light emitting layer disposed between the first electrode layer and the second electrode layer and generating light, and a scattering layer between the first electrode layer and the substrate or between the first electrode layer and the organic light emitting layer. The scattering layer scatters the light.
Abstract:
Provided is a dual-mode display including a substrate, and a plurality of sub pixels on the substrate. Each of the sub pixels may include an emissive device, a reflective optical filter provided on a surface of the emissive device, and an optical shutter provided on other surface of the emissive device.
Abstract:
Provided is a method of fabricating an organic light emitting device that may form a light scattering layer having an irregular random structure at a low temperature. The method includes providing a substrate coated with a precursor layer; sequentially forming a metal layer and an organic layer on the precursor layer; performing a heat treatment of the organic layer to form an organic mask from the organic layer; patterning the metal layer by using the organic mask to form a metal mask; patterning the precursor layer by using the metal mask to form a light scattering layer having an irregular random structure; removing the metal mask and the organic mask; and sequentially stacking a planarization layer, a first electrode, an organic light emitting layer, a second electrode, and a passivation layer on the light scattering layer.
Abstract:
Provided are a random wrinkle structure-formable compound, a composition including the same, a film including a random wrinkle structure, a method of forming the film, and an organic light emitting device including the film. A compound according to the present invention is coated and then, a film having a surface structure of random wrinkles may be simply formed through simple ultraviolet (UV) curing or thermosetting. When the film thus formed is used in an organic light emitting device, light generated from the organic light emitting device is scattered on surfaces of the random wrinkles to prevent light guide or total reflection, and thus, light is extracted to the outside. That is, a random structure disposed at the outside of the device performs a light extraction function and consequently, light efficiency of the organic light emitting device may be increased.
Abstract:
Provided is an electrochromic display device including: a first substrate; a second substrate on the first substrate; an electrolyte layer disposed between the first substrate and the second substrate; a first transparent electrode provided between the electrolyte layer and the first substrate; second transparent electrodes provided between the electrolyte layer and the second substrate; a first electrochromic layer provided between the first transparent electrode and the electrolyte layer; and a second electrochromic layer provided between the second transparent electrodes and the electrolyte layer, wherein the second transparent electrodes each extend in a first direction and be disposed apart from each other in a second direction perpendicular to the first direction, the second electrochromic layer extends between the second transparent electrodes and contacts a lower surface of the second substrate, the first electrochromic layer includes an inorganic electrochromic material, and the second electrochromic layer includes an organic electrochromic material.
Abstract:
Provided is a biometric information measurement method. The method includes providing a bio-material including at least one of cells and tissues, contacting a first electrode and a second electrode with the bio-material and applying a first electrical signal and a second electrical signal to the bio-material, sensing a third electrical signal from the bio-material, and analyzing an oxygen concentration in the bio-material from the third electrical signal.
Abstract:
Provided are an optical device and a manufacturing method thereof. The method of manufacturing an optical device may include providing a substrate structure, and depositing an array including curved structures on the substrate structure. The curved structures may include a crystalline organic compound.