Abstract:
Monolithic beam-shaping optical systems and methods are disclosed for an optical coherence tomography (OCT) probe that includes a transparent cylindrical housing having asymmetric optical power. The system includes a transparent monolithic body having a folded optical axis and at least one alignment feature that supports the end of an optical fiber adjacent an angled planar end wall. The monolithic body also includes a total-internal reflection surface and a lens surface that define object and image planes. Light from the optical fiber end traverses the optical path, which includes the cylindrical housing residing between the lens surface and the image plane. Either the lens surface by itself or the lens surface and the reflective (eg, TIR) surface in combination are configured to substantially correct for the asymmetric optical power of the cylindrical housing, thereby forming a substantially rotationally symmetric image spot at the image plane.
Abstract:
A monolithic optical coherence tomography (OCT) probe is provided. The probe includes a first section having a groove, an optical fiber in the groove, and a second section having a reflective surface. The optical fiber is in optical communication with the reflective surface.
Abstract:
A system and method for sintering a thin, high purity fused silica glass sheet having a thickness of 500 μm or less, includes a step of rastering a beam of a laser across a sheet of high purity fused silica soot; wherein a pattern of the rastering includes tightly spacing target locations on the sheet such that the laser sinters the soot and simultaneously forms tiny notches on a first major surface of the sheet when viewed in cross-section, wherein the tiny notches are crenellated such that at least some of the notches have generally flat bottom surfaces and at least some respective adjoining caps have generally plateau top surfaces offset from the bottom surfaces by steeply-angled sidewalls.
Abstract:
A high-divergence-angle optical fiber apparatus is disclosed that includes a multimode optical fiber having a distal end and a divergence angle θ′. A light-redirecting structure is operably disposed at the distal end and consists of an array of between 1 and 10 layers of fused glass microspheres. The light-redirecting structure defines a divergence angle θ, wherein θ≥2θ′. A light source system that utilizes the high-divergence-angle optical fiber apparatus is also disclosed.
Abstract:
A system and method for sintering a thin, high purity fused silica glass sheet having a thickness of 500 μm or less, includes a step of rastering a beam of a laser across a sheet of high purity fused silica soot; wherein a pattern of the rastering includes tightly spacing target locations on the sheet such that the laser sinters the soot and simultaneously forms tiny notches on a first major surface of the sheet when viewed in cross-section, wherein the tiny notches are crenellated such that at least some of the notches have generally flat bottom surfaces and at least some respective adjoining caps have generally plateau top surfaces offset from the bottom surfaces by steeply-angled sidewalls.
Abstract:
A non-cylindrical hypotube is disclosed, such as for use in OCT and endoscopy. The hypotube is defined by a non-cylindrical, rotationally symmetric tube and has an interior, a proximal-end section with an outer diameter D1, a distal-end section with an outer diameter D3, and a middle section between the proximal-end and distal-end sections and having an outer diameter D2, wherein D2
Abstract:
Integrated torque jacket systems and methods for optical coherence tomography are disclosed. The system includes an optical fiber cable having an optical fiber surrounded by an outer jacket. An optical probe is operably attached to the distal end of the optical fiber cable. The optical fiber cable includes either a plurality of low-friction bearings or a spiral member operably attached thereto along its length, thereby defining the integrated torque jacket system. The integrated torque jacket system resides within the flexible guide tube with a close fit that allows for rotation and axial translation of the integrated torque jacket system within the guide tube interior. The integrated torque jacket system serves to transfer torque and axial translation applied at its proximal end to the distal end to rotate and axially translate the optical probe within the guide tube.
Abstract:
A torque transmission assembly comprising: (i) an optical fiber coupled to an optical sensing component and capable of rotating and translating the optical sensing component and of transmitting light to and from the optical sensing component; and (b) an annular structure surrounding the optical fiber, the annular structure in conjunction with said optical fiber transmits torque from a rotating component to the optical sensing component, wherein the annular structure does not include a steel wire torque spring.
Abstract:
Monolithic beam-shaping optical systems and methods are disclosed for an optical coherence tomography (OCT) probe that includes a transparent cylindrical housing having asymmetric optical power. The system includes a transparent monolithic body having a folded optical axis and at least one alignment feature that supports the end of an optical fiber adjacent an angled planar end wall. The monolithic body also includes a total-internal reflection surface and a lens surface that define object and image planes. Light from the optical fiber end traverses the optical path, which includes the cylindrical housing residing between the lens surface and the image plane. Either the lens surface by itself or the lens surface and the reflective (eg, TIR) surface in combination are configured to substantially correct for the asymmetric optical power of the cylindrical housing, thereby forming a substantially rotationally symmetric image spot at the image plane.
Abstract:
A method of assembling optoelectronic and/or photonic components, said method comprising: (i) providing at least two optoelectronic and/or photonic components; (ii) aligning and situating these components relative to one another and in close proximity with one another so as to: (a) provide optical coupling between these components; and (b) maintain the distance d between the adjacent parts of these components, where d is 0 to 100 μm; (iii) adhering these components to one another with while maintaining optical coupling therebetween; and (iv) laser welding these components together while maintaining optical coupling therebetween.