Abstract:
The present disclosure discloses a thin film transistor assembly, an array substrate and a method of manufacturing the same, and a display device including the array substrate. The array substrate includes a substrate; a plurality of thin film transistors formed on the substrate; and a plurality of light shielding layers, each of the light shielding layers being arranged between a source electrode and a drain electrode of the thin film transistor and configured to block light from the exterior from illuminating an active layer of the thin film transistor. The light shielding layer and the source electrode and the drain electrode of the thin film transistor are formed in the same layer on the substrate. As the light shielding layer, the source electrode and the drain electrode of the thin film transistor and a data line may be formed on the substrate by using the same material layer through a single patterning process, times of performing patterning processes and the number of masks used may be reduced and thus manufacturing process and cost of the array substrate may be decreased.
Abstract:
A thin film transistor, an array substrate (1) and a manufacturing method thereof are provided. The thin film transistor comprises a substrate (1) and a gate electrode (2), a gate insulating layer (3), a semiconductor layer (4), a protective layer (5), an ohmic contact layer (6), a source electrode (7) and a drain electrode (8) successively stacked on the substrate (1), wherein the protective layer (5) has two via holes (11) over the semiconductor layer (4) so as to expose the underlying semiconductor layer (4), the semiconductor layer (4) exposed by the via hole (11) is covered by the ohmic contact layer (6); the source and drain electrodes (7, 8) are connected to the semiconductor layer (4) through the ohmic contact layer (6) at the via hole (11).
Abstract:
The present disclosure provides a display substrate and a display device. The display substrate includes a pixel circuit, and the pixel circuit includes a light-emitting element, a driving circuit and a capacitor circuit. The driving circuit is configured to drive the light-emitting element to emit light; a first terminal of the capacitor circuit is electrically connected to a control terminal of the driving circuit, and a second terminal of the capacitor circuit is electrically connected to a data writing-in node; the capacitor circuit includes at least two capacitors connected in parallel with each other.
Abstract:
A display substrate includes: a base substrate, a display functional layer located on a first side surface of the base substrate, where the display functional layer includes an encapsulation layer, and a plurality of metal lines located on a second side surface of the base substrate, a first gap being provided between adjacent metal lines. A first orthographic projection of the encapsulation layer onto the base substrate at least partially does not overlap a second orthographic projection of the first gap onto the base substrate, and/or, a light-shielding layer is arranged at a side of the encapsulation layer facing the metal lines, the light-shielding layer is located on the first side surface of the base substrate, and a third orthographic projection of the light-shielding layer onto the base substrate at least partially overlaps the second orthographic projection.
Abstract:
A semi-transparent semi-retroreflective film and an air display device are provided. The air display device includes: a first polarizer and a second polarizer assembled with each other to form a cell; a semi-transparent semi-reflective structure and a semi-transparent semi-retroreflective film disposed between the first polarizer and the second polarizer; a first ¼ wave plate disposed at a side of the air display device adjacent to the first polarizer; and a second ¼ wave plate disposed between the semi-transparent semi-reflective structure and the semi-transparent semi-retroreflective film. The air display device is configured such that polarized light incident from the first polarizer, after being processed by an internal optical path of the air display device, exits from the second polarizer to form an air image at a side of the air display device away from the first polarizer.
Abstract:
Embodiments of the disclosure provide an array substrate and a manufacturing method thereof, and a display device. The method includes: forming a semiconductor material film, a first insulation material film and a first conductive material film successively on a base substrate, and processing these films through a single patterning process to form an active pattern, a gate insulation pattern and a gate electrode; forming a second insulation layer and forming two contact holes in the second insulation layer and gate insulation pattern; forming a second conductive material film and forming two contact structures from portions of this layer; and forming a third conductive material film, and processing this layer through a single patterning process to form a pixel electrode, and source and drain electrodes being in direct contact with the two contact structures respectively, the pixel electrode and one contact structure being integrated into one piece.
Abstract:
Embodiments of the disclosure provide an array substrate and a manufacturing method thereof, and a display device. The method includes: forming a semiconductor material film, a first insulation material film and a first conductive material film successively on a base substrate, and processing these films through a single patterning process to form an active pattern, a gate insulation pattern and a gate electrode; forming a second insulation layer and forming two contact holes in the second insulation layer and gate insulation pattern; forming a second conductive material film and forming two contact structures from portions of this layer; and forming a third conductive material film, and processing this layer through a single patterning process to form a pixel electrode, and source and drain electrodes being in direct contact with the two contact structures respectively, the pixel electrode and one contact structure being integrated into one piece.
Abstract:
An array substrate and manufacturing method thereof and a display device. The display device includes a pixel electrode (8), including a first portion (b) in a non-display region and a second portion (a) in a display region; a first electrode (6) formed on the first portion (b) of the pixel electrode (8); a passivation layer (9) formed on the pixel electrode (8) and the first electrode (6), the passivation layer (9) includes a via hole (11) located over the first electrode (6); an active layer (4) and a second electrode (7) that are formed on the passivation layer (9), the active layer (4) being connected to the first electrode (6) through the via hole (11) of the passivation layer (9). With the array substrate and the manufacturing method thereof, the manufacturing cost is reduced, materials of the electrodes are less subjected to corrosion, and quality of the array substrate is enhanced.
Abstract:
The present disclosure discloses a thin film transistor assembly, an array substrate and a method of manufacturing the same, and a display device including the array substrate. The array substrate includes a substrate; a plurality of thin film transistors formed on the substrate; and a plurality of light shielding layers, each of the light shielding layers being arranged between a source electrode and a drain electrode of the thin film transistor and configured to block light from the exterior from illuminating an active layer of the thin film transistor. The light shielding layer and the source electrode and the drain electrode of the thin film transistor are formed in the same layer on the substrate. As the light shielding layer, the source electrode and the drain electrode of the thin film transistor and a data line may be formed on the substrate by using the same material layer through a single patterning process, times of performing patterning processes and the number of masks used may be reduced and thus manufacturing process and cost of the array substrate may be decreased.
Abstract:
An oxide thin-film transistor (TFT) array substrate, a manufacturing method thereof and a display panel are provided. In the manufacturing method, a pattern of a gate insulating layer (13), an oxide active layer (14) and an etch barrier layer (15) is formed on a substrate (10) on which a pattern of a gate line (11) and a gate electrode (12) is formed, by one patterning process.