Abstract:
Electronic devices and accessories for electronic devices such as headsets are provided. The electronic devices may produce audio output. The headsets may include earbuds with speakers that play the audio output for a user while the earbuds are located in the user's ears. Circuitry in an electronic device and a headset may be used in evaluating how well the earbuds are sealed to the user's ears. In response to seal quality measurements, informative messages can be generated for the user, overall earbud volume may be increased, balance adjustments may be made to correct for mismatched balance between left and right earbuds, equalization settings may be adjusted, and noise cancellation circuitry settings can be changed. Electrical impedance measurements and acoustic measurements can be used in evaluating seal quality.
Abstract:
A dual orientation connector having a connector tab with first and second major opposing sides and a plurality of electrical contacts carried by the connector tab. The plurality of contacts includes a first set of external contacts formed at the first major side and a second set of external contacts formed at the second major side. Each individual contact in the first plurality of contacts is electrically connected within the tab or body to a corresponding contact in the second plurality of contacts. In some embodiments contacts in the first and second pluralities of contacts that are directly opposite each other are coupled together. In some other embodiments, contacts in the first and second pluralities of contacts that are in a cater cornered relationship with each other are coupled together. The first plurality of contacts are symmetrically spaced with the second plurality of contacts and the connector tab is shaped to have 180 degree symmetry so that it can be inserted and operatively coupled to a corresponding receptacle connector in either of two insertion orientations.
Abstract:
A dual orientation connector having a connector tab with first and second major opposing sides and a plurality of electrical contacts carried by the connector tab. The plurality of contacts includes a first set of external contacts formed at the first major side and a second set of external contacts formed at the second major side. Each individual contact in the first plurality of contacts is electrically connected within the tab or body to a corresponding contact in the second plurality of contacts. In some embodiments contacts in the first and second pluralities of contacts that are directly opposite each other are coupled together. In some other embodiments, contacts in the first and second pluralities of contacts that are in a cater cornered relationship with each other are coupled together. The first plurality of contacts are symmetrically spaced with the second plurality of contacts and the connector tab is shaped to have 180 degree symmetry so that it can be inserted and operatively coupled to a corresponding receptacle connector in either of two insertion orientations.
Abstract:
Examples can provide circuits, methods, and apparatus that can determine a quality of a seal formed using an audio device, can inform a user of the quality of the seal, and can help the user to improve the quality of the seal.
Abstract:
An electronic device may contain an input-output device such as a speaker, vibrator, or near field communications antenna. The input-output device may include an inductor. The inductor in the input-output device may be shared by wireless charging circuitry in the electronic device so that wireless charging signals can be converted into power to charge a battery in the electronic device. A separate inductor may also be provided within an input-output device to support wireless charging. A drive circuit may supply drive signals to the input-output device such as audio signals, vibrator control signals, or near field communications output signals for external near field communications equipment. An input amplifier that is coupled across the inductor in the input-output device may be used in receiving near field communications signals.
Abstract:
An electronic device may contain an input-output device such as a speaker, vibrator, or near field communications antenna. The input-output device may include an inductor. The inductor in the input-output device may be shared by wireless charging circuitry in the electronic device so that wireless charging signals can be converted into power to charge a battery in the electronic device. A separate inductor may also be provided within an input-output device to support wireless charging. A drive circuit may supply drive signals to the input-output device such as audio signals, vibrator control signals, or near field communications output signals for external near field communications equipment. An input amplifier that is coupled across the inductor in the input-output device may be used in receiving near field communications signals.
Abstract:
A retail electronic product demonstration fixture for demonstrating portable electronic devices. The product demonstration fixture may include an exhibition portion and a base portion. A portable electronic device offered for sale may be affixed to the exhibition portion. The base portion may include an electronic display, an auxiliary battery, and an auxiliary controller. The auxiliary controller may direct power from the auxiliary battery to the electronic display upon determining that a battery within the electronic display has fallen below a particular selected level. Similarly the auxiliary controller may direct power from the auxiliary battery to the portable electronic device offered for sale upon determining that a battery within the portable electronic device has fallen below a selected level.
Abstract:
Various techniques for temperature management during inductive energy transfer are disclosed. A transmitter device and/or a receiver device can be turned off during energy transfer based on the temperature of the transmitter device and/or of the receiver device.
Abstract:
An inductive charging system can include a transmitter device and a receiver device. The transmitter device may be adapted to detect when a receiver coil in the receiver device is coupled to a transmitter coil in the transmitter device. For example, the current input into a DC-to-AC converter in the transmitter device can be measured and coil coupling detected when the current equals or exceeds a threshold value.
Abstract:
An electronic device that includes a plug connector having a tab adapted to be inserted into a receptacle connector of a second device during a mating event, the tab including first and second opposing surfaces and a contact region formed at the first surface of the tab, the contact region including a plurality of contacts spaced apart along a first row, the plurality of contacts including a first contact, a power contact and a ground contact; a computer-readable memory having identification, configuration and authentication information relevant to the electronic device that can be communicated to the second device during a mating event stored therein; circuitry coupled to the first contact and configured to, after a mating event in which the plug connector is inserted into the receptacle connector, participate in a handshaking algorithm that includes receiving a command over the first contact from the second device and sending a response to the command that includes contact configuration information for the electronic device over the first contact to the second device; and power circuitry, coupled to the power contact, configured to deliver power to charge a device coupled to the electronic device via the plug connectors.