Abstract:
The subject matter of the disclosure relates to low temperature power throttling at a mobile device to reduce the likelihood of an unexpected power down event in cold weather environments. A mobile device employing a power management solution may be configured to determine that a monitored temperature at the mobile device (at the battery of the mobile device) is below a first threshold level, and whether a hardware component (such as a camera) is active or inactive. Then, based on these determinations, the mobile device can select a throttle setting from a first set of throttle settings when the hardware component is active, and a second set of throttle settings when the hardware component is inactive. Subsequently the mobile device can throttle power consumption for one or more components of the mobile device according to the selected throttle setting.
Abstract:
Various techniques for temperature management during inductive energy transfer are disclosed. A transmitter device and/or a receiver device can be turned off during energy transfer based on the temperature of the transmitter device and/or of the receiver device.
Abstract:
Systems and methods are disclosed for allocating and distributing power management budgets for subsystems (e.g., power usage clients) of a computer system. A power budget allocation subsystem may include a plurality of feedback branches having different associated time constants. Power usage clients with slower power response times may be provided power budgets based on a feedback branch having an associated longer time constant, while power usage clients with faster power response times may be provided with power budgets based on a feedback branch having an associated shorter time constant. The power budgets may be determined in the feedback branches based on power budgeting policies weighting the power budget of each subsystem relative to total power mitigation.
Abstract:
The subject matter of the disclosure relates to low temperature power throttling at a mobile device to reduce the likelihood of an unexpected power down event in cold weather environments. A mobile device employing a power management solution may be configured to determine that a monitored temperature at the mobile device (at the battery of the mobile device) is below a first threshold level, and whether a hardware component (such as a camera) is active or inactive. Then, based on these determinations, the mobile device can select a throttle setting from a first set of throttle settings when the hardware component is active, and a second set of throttle settings when the hardware component is inactive. Subsequently the mobile device can throttle power consumption for one or more components of the mobile device according to the selected throttle setting.
Abstract:
One or more operations in an electronic device can be adjusted based on environment data, such as temperature data and/or humidity data. The electronic device may be, for example, a receiver device or a transmitter device in an inductive energy transfer system. Example operations that may be adjusted based on environmental data include, but are not limited to, the brightness of a display or a haptic output produced by a haptic mechanism.
Abstract:
In an embodiment, an electronic device includes a package power zone controller. The device monitors the overall power consumption of multiple components of a “package.” The package power zone controller may detect workloads in which the package components (e.g. different types of processors, peripheral hardware, etc.) are each consuming relatively low levels of power, but the overall power consumption is greater than a desired target. The package power zone controller may implement various mechanisms to reduce power consumption in such cases.
Abstract:
An electronic device may have electrical components that produce heat during operation. An electronic device may also be heated by sunlight incident on the device. A thermal management model may take into account device structures such as housing materials in modeling the thermal behavior of the device. Temperature sensors in the device may be used to measure internal temperatures. The model may use temperature measurements and other data such as environmental data measured with sensors in predicting temperatures for one or more regions in a device. In response to prediction of a temperature greater than a predetermined threshold, the device may take remedial action to avoid overheating. Remedial action may include adjusting electrical components so that they produce less heat, activating a heat blocking component such as an electronic shutter, and reducing communications activity levels and other software activity levels.
Abstract:
Various techniques for temperature management during inductive energy transfer are disclosed. A transmitter device and/or a receiver device can be turned off during energy transfer based on the temperature of the transmitter device and/or of the receiver device.
Abstract:
The subject matter of the disclosure relates to low temperature power throttling at a mobile device to reduce the likelihood of an unexpected power down event in cold weather environments. A mobile device employing a power management solution may be configured to determine that a monitored temperature at the mobile device (at the battery of the mobile device) is below a first threshold level, and whether a hardware component (such as a camera) is active or inactive. Then, based on these determinations, the mobile device can select a throttle setting from a first set of throttle settings when the hardware component is active, and a second set of throttle settings when the hardware component is inactive. Subsequently the mobile device can throttle power consumption for one or more components of the mobile device according to the selected throttle setting.
Abstract:
Systems and methods are disclosed for allocating and distributing power management budgets for subsystems (e.g., power usage clients) of a computer system. A power budget allocation subsystem may include a plurality of feedback branches having different associated time constants. Power usage clients with slower power response times may be provided power budgets based on a feedback branch having an associated longer time constant, while power usage clients with faster power response times may be provided with power budgets based on a feedback branch having an associated shorter time constant. The power budgets may be determined in the feedback branches based on power budgeting policies weighting the power budget of each subsystem relative to total power mitigation.