Abstract:
Methods and apparatus for dynamically compensating for the effects of interference between multiple wireless communications apparatus. In one embodiment, the method comprises providing a first wireless communication apparatus operating in a first band and a second wireless communication apparatus operating in the same first band (or proximate to the first band and with a comparatively high transmitter power), where the second wireless communication apparatus operates according to a different communication protocol than the first wireless communication apparatus and further change in physical configuration with respect to one another. Based on the physical configuration, interference is compensated for between the first wireless communication apparatus and the second wireless communication apparatus “on the fly” by selecting and operating according to one of a plurality of operational protocols.
Abstract:
Methods and apparatus for reduction of interference between a plurality of wireless interfaces. In one exemplary embodiment, a device having a first (e.g., Wi-Fi) interface and a second (e.g., Bluetooth) interface monitors interference between its interfaces. A reduction in transmit power of the Wi-Fi module causes a disproportionately larger reduction in undesirable interference experienced at the Bluetooth antennas. For example, when the Bluetooth interface detects interference levels above acceptable thresholds, the Wi-Fi interface adjusts operation of one or more of its transmit chains based on various conditions such as duty cycle, Received Signal Strength Indication (RSSI), etc. Various embodiments of the present invention provide simultaneous operation of WLAN and PAN interfaces, without requiring time division coexistence, by reducing power on a subset of interfering antennas.
Abstract:
Apparatus and methods for rapid, cost effective testing of wireless systems. In one embodiment, a unit under test (UUT) is tested by a test “server”. The UUT and test server communicate via a “connectionless” protocol which is based on beacons (and beacon responses) which can carry one or more test primitives. The aforementioned “connection-less” test protocol can be performed without wireless network configuration, which greatly reduces test time, Additionally, exemplary solutions are presented for “lock-up” of the UUT and the test server.
Abstract:
Methods and apparatus for selectively switching one or more antennas in a multiple-input, multiple-output (MIMO) antenna array so as to mitigate interference with another RF interface within the same space-constrained device, based on radio frequency isolation. In one embodiment, the MIMO interface comprises a WLAN interface having a 2×2 or 3×3 array of antennae which are placed in a wireless device in an asymmetric fashion with respect to the antenna of the second interface, and the other interface comprises a PAN (e.g., Bluetooth) interface operating in an overlapping frequency band (e.g., ISM band). When both interfaces are operating, interference is mitigated through selectively switching off one or more of the MIMO antennae, and using the remaining antenna(e) having the best isolation from the Bluetooth antennae. This approach allows simultaneous operation of both interferences without significant degradation to user experience or the operation of either interface, and may also provide power savings critical to mobile device battery longevity.
Abstract:
Systems, methods, and mechanisms to enhance border router performance across Thread, Wi-Fi, and Bluetooth protocols, including mechanisms for Thread network mesh reconfiguration for optimized/enhanced coexistence and frequency selection with Wi-Fi and Bluetooth, co-located Wi-Fi/Bluetooth/Thread coexistence border router design, and dynamic adjustment for Thread energy detection (ED).
Abstract:
Embodiments relate to an integrated circuit of an electronic device that coordinates activities with another integrated circuit of the electronic device. The integrated circuit includes an interface circuit and a processor circuit. The interface circuit communicates over a multi-drop bus connected to multiple electronic components. The processor circuit receives an authorization request from the integrated circuit via the interface circuit and the multi-drop bus. The received authorization request relates to authorization to perform an activity on the other integrated circuit. In response to receiving the authorization request, the processor circuit determines whether the other integrated circuit is authorized to execute the activity. In response to determining that the other integrated circuit is authorized to execute the activity, the processor circuit sends, to the other integrated circuit over a configurable direct connection, an authorization signal authorizing the other integrated circuit to execute the activity.
Abstract:
Methods and apparatuses for mitigating coexistence interference in a wireless device between a WLAN interface and a WPAN interface during a WLAN authentication process. The wireless device associates with a WLAN access point (AP), and after receiving a WLAN association response from the WLAN AP, the wireless device alternates between WLAN time periods, during which WLAN transmission is enabled and WPAN transmission is disabled, and WPAN time periods, during which WPAN transmission is enabled and WLAN transmission is disabled, during the WLAN authentication process. Durations of the WPAN time periods are based at least in part on a WPAN profile, e.g., a Bluetooth profile, in use by the wireless device. Durations of the WLAN time periods are based at least in part on receipt of WLAN authentication messages from the WLAN AP during the authentication process or expiration of WLAN authentication process timers.
Abstract:
Methods and apparatuses for managing coexistence of multiple wireless devices that share a radio frequency band and communicate with a wireless network device. The wireless devices include both wireless personal area network (WPAN) and wireless local area network (WLAN) devices. The wireless network device monitors data activity for WPAN devices to determine whether the WPAN devices are active or inactive, and sets one or more polling intervals for the WPAN devices accordingly. The wireless network device consolidates polling for multiple WPAN devices into a common WPAN polling time period and sends a radio frequency (RF) reservation request to a WLAN access point (AP), the RF reservation request including an indication of a duration for the common WPAN polling time period, during which the multiple WPAN devices are polled. WLAN data packet transmission is delayed during the common WPAN polling time period to mitigate coexistence interference.
Abstract:
Methods and apparatus for reduction of interference between a plurality of wireless interfaces. In one exemplary embodiment, a device having a first (e.g., Wi-Fi) interface and a second (e.g., Bluetooth) interface monitors interference between its interfaces. A reduction in transmit power of the Wi-Fi module causes a disproportionately larger reduction in undesirable interference experienced at the Bluetooth antennas. For example, when the Bluetooth interface detects interference levels above acceptable thresholds, the Wi-Fi interface adjusts operation of one or more of its transmit chains based on various conditions such as duty cycle, Received Signal Strength Indication (RSSI), etc. Various embodiments of the present invention provide simultaneous operation of WLAN and PAN interfaces, without requiring time division coexistence, by reducing power on a subset of interfering antennas.
Abstract:
Methods and apparatus for mitigating the effects of interference between multiple air interfaces located on an electronic device. In one embodiment, the air interfaces include a WLAN interface and PAN (e.g., Bluetooth) interface, and information such as Receiver Signal Strength Index (RSSI) as well as system noise level information are used in order to intelligently execute interference mitigation methodologies, including the selective application of modified frequency selection, variation of transmitter power, and/or change of operating mode (e.g., from multiple-in multiple-out (MIMO) to single-in, single-out (SISO)) so as to reduce isolation requirements between the interfaces. These methods and apparatus are particularly well suited to use cases where the WLAN interface is operating with high data transmission rates. Business methods associated with the foregoing technology are also described.