Abstract:
A method for testing heat pipes includes the following steps. A plurality of bar-shaped heat pipes having the same size is provided, and the heat pipes are deformed. The deformed heat pipes are placed in a temperature regulator, such that a temperature of the heat pipes is periodically changed between a first temperature and a second temperature. The heat pipes are then taken out of the temperature regulator. One end of each heat pipe is maintained at a third temperature by a thermostatic device, and a heat pipe temperature difference of two opposite ends of the heat pipe is measured. The heat pipes having the heat pipe temperature difference greater than a standard temperature difference in the heat pipes are marked.
Abstract:
A mobile computing apparatus includes a shell, a circuit board, a first heat-dissipation module, a centrifugal fan for exhaust, and a centrifugal fan for convection. The shell has a first through hole. The circuit board is disposed on the shell, and has a first heat-generation device. The first heat-dissipation module has a first heat-absorption end and a first heat-dissipation end, and the first heat-absorption end thermally contacts with the first heat-generation device. The centrifugal fan for exhaust has a first gas outlet, and the first heat-dissipation end is located between the first gas outlet and the first through hole, so that the centrifugal fan for exhaust exhausts to an outside of the shell. The centrifugal fan for convection is configured in the shell, and exhausts to an inside of the shell. Therefore, gas flow circulation occurs in the shell, so that the mobile computing apparatus has a desirable heat-dissipation effect.
Abstract:
A heat-dissipating module suitable for dissipating heat generated by a heat-generating element is provided. The heat-dissipating module includes a first heat-conducting plate, a first heat-dissipating tube, and a fan. The first heat-conducting plate is thermally coupled to the heat-generating element. The first heat-dissipating tube has a first opening and a second opening opposite to the first opening. The first heat-conducting plate is connected to the first heat-dissipating tube and located at an outside of the first heat-dissipating tube. The fan is disposed adjacent to the first opening and corresponding to first opening. The fan is adapted for generating an air current flowing in the first heat-dissipating tube. The heat-dissipating module can transfer the heat generated by the heat-generating element during operation to an external environment.
Abstract:
A fixing structure of heat conduction pad is used to uniformly press two heat conduction pads on the two heat generating electronic components on a circuit board respectively. The fixing structure includes a fixing member and an elastic member. The two ends of the elastic member are a fastening portion and a fixing portion respectively. The middle part of the elastic member is a pressing portion. In addition, a suspension arm is extended from the fixing portion. When the fastening portion is to be fasten on the circuit board and the fixing portion is to be fixed on the circuit board by the fixing member, the pressing portion presses one of the heat conduction pad on one of the heat generating electronic component, and the suspension arm presses the other heat conduction pad on the other heat generating electronic component.
Abstract:
A protective cover with a heat-conductive medium of a heat sink apparatus is provided, which is used to cover and protect the heat-conductive medium placed at the bottom surface of a base of the heat sink apparatus. It includes a sheet-like board, an elastic wall, and an accommodation chamber, wherein the sheet-like board is concave and located at one side of the protective cover with the heat-conductive medium; the elastic wall is extended along the edge of the sheet-like board so as to provide a clipping force for clipping with the heat sink apparatus; and the accommodation chamber is formed by the concave portion of the sheet-like board to mask and cover the heat-conductive medium; while the sheet-like board is clipped to the heat sink apparatus through the elastic wall, such that the accommodation chamber is used to mask and cover the heat-conductive medium.
Abstract:
A supporting plate includes a metal plate and is utilized to support a heat sink module in an electronic device. The heat sink module has a thermal pad, and the electronic device has a first heat generating element and a second heat generating element. In addition, the heat sink module is contacted to the first heat generating element for conducting heat generated by the first heat generating element to the thermal pad. Moreover, the metal plate has a first concave portion and a second concave portion. The first concave portion is contacted to the thermal pad, and the second concave portion is contacted to the second heat generating element for conducting heat generated by the second heat generating element to the heat sink.
Abstract:
An automatic coating device uses a driving motor and a conveyer to form a cyclically rotating module. An injector filled with a coating material is disposed on one side of the conveyer. When an object to be coated is disposed on the other side of the moving conveyer, the coating material is then applied onto the object by the injector. This can increase the coating speed and quality.
Abstract:
An integrated heat sink device, which is utilized to dissipate the heat generated by heat-generating elements with different angles of radiation surface (for instance, CPU and display chip are with radiation surfaces at 180° and 90°), is provided. The integrated heat sink device comprises a thermal module and a fan module; wherein the thermal module further comprises a first heat conduction module, a fin set, and a second heat conduction module; wherein the fan module, its vent connects with the fin set in an air-tight manner in order to form a heat-dissipating channel; and the first and second heat conduction modules are with different angles of heat connected surfaces so that the invention of the integrated heat sink device can dissipate the heat generated by heat-generating elements with different angles of radiation surface.
Abstract:
A fool-proof device on the heatsink thermal module for the notebook computer is provided. With an interference member installed on one side of the case of the heatsink thermal module, when installing the heatsink thermal module, the interference member and a predetermined recognition area on the printed circuit board (PCB) can provide a fool-proof function to avoid assembling error of two modules with different standard but similar in appearance in the assembling process.
Abstract:
A corresponding relation between heat resistance values of first heat dissipation modules under a non-uniform heat source and heat resistance values of the first heat dissipation modules under a uniform heat source is described through a linear equation. Therefore, before second heat dissipation modules are tested, a calculation is performed with the linear equation, such that a target heat resistance value of the first heat dissipation modules arranged on the non-uniform heat source is corresponding to a standard heat resistance value of the first heat dissipation modules arranged on the uniform heat source. Afterwards, it is predicted whether the second heat dissipation modules arranged on the non-uniform heat source satisfy a test standard or not by using a test heat resistance value acquired by testing the second heat dissipation modules arranged on the uniform heat source.