Abstract:
The present invention is a memory circuit for writing prescribed numbers of bits of write data, determined according to the burst length, in response to write command, comprising: a first stage for inputting, and then holding, row addresses and column addresses simultaneously with the write command; a second stage having a memory core connected to the first stage via a pipeline switch, wherein the row addresses and column addresses are decoded, and word line and sense amps are activated; a third stage for inputting the write data serially and sending the write data to the memory core in parallel; and a serial data detection circuit for generating write-pipeline control signal for making the pipeline switch conduct, after the prescribed number of bits of write data has been inputted. According to the present invention, in an FCRAM exhibiting a pipeline structure, the memory core in the second stage can be activated after safely fetching the write data in the burst length. When writing successively or reading successively, moreover, the command cycle can made short irrespective of the burst length.
Abstract:
According to an aspect of the present invention, a memory device having a plurality of banks carries out bank interleaving by use of a plurality of common data buses, the number of which is less than the number of the banks. The present invention enables the data to be read more rapidly while suppressing the increase of the chip area. According to the present invention, there is provided a memory device having a plurality of banks each including a plurality of memory cells, and reading or writing data from or into the memory cells in synchronism with a clock signal, the memory device comprising: a sense amplifier disposed on each of the plurality of banks, for amplifying data read from the memory cells; a plurality of common data buses shared by the plurality of banks, the number of the common data buses being less than the number of the banks; and a switching circuit disposed on each of the plurality of banks, for feeding or receiving data of the each bank to or from the plurality of common data buses; wherein read or write of data of the plurality of banks is made through successive selection of the plurality of common data buses by the switching circuit.
Abstract:
Switching transistors 20, 22, 22P, 21, 23 and 23P and a portion of control circuit for transistors 20 and 21 constitutes a bit line reset circuit on memory cell side. In reading `H` from the memory cell connected to a bit line BLC or *BLC, the both bit lines are set at a higher reset potential Vii, while in reading `L`, the both bit lines are reset at a lower reset potential Vss. Transfer gates 10 and 11 are turned off before sufficient amplification of a potential difference between the bit lines BL and *BL. The operation of restoring into a memory cell read destructively from is performed in parallel with the operation of bit line reset.
Abstract:
In a two-stroke internal combustion engine, total hydrocarbon (THC) exhaust is decreased as a result of small structural changes and without loss of output power. A Schnurle scavenging-type combustion chamber has a hemispherical main surface and an annular skirt-like squish band, and a spark plug is disposed for a spark point to be substantially at the center of the combustion chamber. The squish band has minimized width.
Abstract translation:在二冲程内燃机中,总碳氢化合物(THC)排气由于结构变化小而不损失输出功率而减少。 Schn + E,uml u + EE清除式燃烧室具有半球形主表面和环形裙状挤压带,火花塞设置为基本上位于燃烧室的中心。 挤压带具有最小的宽度。
Abstract:
A semiconductor memory includes a plurality of nonvolatile memory cells arranged in a matrix and coupled to control gate lines, selection gate lines, bit lines, and source lines, and includes a source line control unit. The source line control unit, at a time of program operation, sets one of the source lines coupled to a row of the memory cells including a program memory cell to a high level voltage, and sets at least one of the remaining source lines coupled to a row of a non-program memory cells to be higher than a low level voltage of the selection gate lines and to be lower than the high level voltage of an unselection bit line. Thereby, a leak current lowering a voltage of the source lines at the time of program operation can be blocked off, and a program operation time may be shortened.
Abstract:
In a semiconductor apparatus of the present invention, a plurality of circuit components are provided. A first bus interconnects the circuit components. A second bus interconnects the circuit components. A switching unit outputs a select signal that causes each circuit component to select one of the first bus and the second bus when transmitting a signal from one of the circuit components to another. The second bus has a size larger than a size of the first bus.
Abstract:
In a semiconductor integrated circuit device operating in synchronism with a clock supplied from the outside of the device, there is provided a circuit generating, from the clock, an output strobe signal for outputting data from the device and outputting the output strobe signal to the outside of the device.
Abstract:
A semiconductor memory circuit includes a plurality of memory cell arrays arranged in rows and columns. A decoder circuit selects a predetermined number of memory cell arrays from among the plurality of the memory cell arrays. Sense amplifiers sense data read from selected memory cell arrays. The plurality of memory cell arrays are grouped into a first type of memory cell arrays each having a redundant memory cell and a second type of memory cell arrays each having no redundant memory cell.
Abstract:
A semiconductor memory device that performs a flash write operation without increasing the circuit area. Column selection lines CL0-CL7 extend parallel to word lines at locations corresponding to where column gates are formed. During a flash write mode, the subcolumn decoder 14 simultaneously selects the column selection lines. This writes cell information to every memory cell connected to the selected word line.