摘要:
In a rotating machine comprising a rotor including a rotor core and a plurality of permanent magnet segments, and a stator including a stator core and windings, the permanent magnet segment is obtained by disposing a powder comprising an R2 oxide, R3 fluoride or R4 oxyfluoride on a sintered magnet body of R1—Fe—B composition, wherein R1 to R4 are rare earth elements, and heat treating the powder-covered magnet body. The permanent magnet segment of a cross-sectional shape which is tapered from the center toward opposed ends has a higher coercive force at the ends than at the center.
摘要:
A radially anisotropic magnet is prepared by furnishing a cylindrical magnet-compacting mold comprising a die, a core, and top and bottom punches, packing a magnet powder in the mold cavity, applying a magnetic field across the magnet powder, and forcing the top and bottom punches to compress the magnet powder for compacting the magnet powder by a horizontal magnetic field vertical compacting process. The top punch is divided into segments so that the magnet powder may be partially compressed; in the step of compacting the magnet powder packed in the mold cavity by a horizontal magnetic field vertical compacting process, the magnet powder is partially compressed by the segments of the top punch cooperating with the bottom punch for thereby consolidating the partially compressed zones of magnet powder to a density from 1.1 times the packing density to less than the compact ultimate density; and thereafter, the entire magnet powder in the cavity is compressed under a pressure equal to or greater than that of partial compression by the entire top and bottom punches for finally compacting the magnet powder.
摘要:
A rare earth permanent magnet is in the form of a sintered magnet body having a composition R1aR2bTcAdFeOfMg wherein F and R2 are distributed such that their concentration increases on the average from the center toward the surface of the magnet body, the concentration of R2/(R1+R2) contained in grain boundaries surrounding primary phase grains of (R1,R2)2T14A tetragonal system within the sintered magnet body is on the average higher than the concentration of R2/(R1+R2) contained in the primary phase grains, and the oxyfluoride of (R1,R2) is present at grain boundaries in a grain boundary region that extends from the magnet body surface to a depth of at least 20 μm. The invention provides R—Fe—B sintered magnets which exhibit high magnet performance despite minimal amounts of Tb and Dy used.
摘要:
A rare-earth alloy ingot is produced by melting an alloy composed of 20-30 wt % of a rare-earth constituent which is Sm alone or at least 50 wt % Sm in combination with at least one other rare-earth element, 10-45 wt % of Fe, 1-10 wt % of Cu and 0.5-5 wt % of Zr, with the balance being Co, and quenching the molten alloy in a strip casting process. The strip-cast alloy ingot has a content of 1-200 μm size equiaxed crystal grains of at least 20 vol % and a thickness of 0.05-3 mm. Rare-earth sintered magnets made from such alloys exhibit excellent magnetic properties and can be manufactured under a broad optimal temperature range during sintering and solution treatment.
摘要:
A corrosion resistant rare earth magnet is obtained by (i) applying a treating liquid comprising a flaky fine powder and a metal sol to a surface of R—T—M—B rare earth permanent magnet and then heating to form a composite film of flaky fine powder/metal oxide on the magnet surface; (ii) applying a treating liquid comprising a flaky fine powder and a silane and/or a partial hydrolyzate thereof to a surface of R—T—M—B rare earth permanent magnet and then heating a flaky fine powder/silane and/or partially hydrolyzed silane coating to form a composite film on the magnet surface; or (iii) applying a treating liquid comprising a flaky fine powder and an alkali silicate to a surface of R—T—M—B rare earth permanent magnet and then heating to form a composite film of flaky fine powder/alkali silicate glass on the magnet surface.
摘要:
An R-T-B—C rare earth sintered magnet (R═Ce, Pr, Nd, Tb, or Dy; T=Fe) is obtained by mixing an R-T-B—C magnet matrix alloy with an R fluoride and an R-rich R-T-B—C sintering aid alloy, followed by pulverization, compaction and sintering. The sintered structure consists of an R2T14B type crystal primary phase and a grain boundary phase. The grain boundary phase consists essentially of 40-98 vol % of R—O1-x—F1+2x and/or R—Fy, 1-50 vol % of R—O, R—O—C or R—C compound phase, 0.05-10 vol % of R-T phase, 0.05-20 vol % of B-rich phase or M-B2 phase (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta or W), and the balance of an R-rich phase.
摘要翻译:将RTBC稀土烧结磁体(R-Ce,Pr,Nd,Tb或Dy; T = Fe)通过将RTBC磁体基质合金与R氟化物和富R的RTBC烧结助剂合金混合,然后粉碎 ,压实和烧结。 该烧结结构由R 2 S 14 N 14 B型晶体初相和晶界相组成。 晶界相基本上由40-98%(重量)的RO 1-x 1 -F 1 + 2 +和/或RF Y 1, -50体积%的RO,ROC或RC化合物相,0.05-10体积%的RT相,0.05-20体积%的富B相或MB 2相(M = Ti,V, Cr,Zr,Nb,Mo,Hf,Ta或W),余量为富R相。
摘要:
A rare-earth alloy ingot is produced by melting an alloy composed of 20–30 wt % of a rare-earth constituent which is Sm alone or at least 50 wt % Sm in combination with at least one other rare-earth element, 10–45 wt % of Fe, 1–10 wt % of Cu and 0.5–5 wt % of Zr, with the balance being Co, and quenching the molten alloy in a strip casting process. The strip-cast alloy ingot has a content of 1–200 μm size equiaxed crystal grains of at least 20 vol % and a thickness of 0.05–3 mm. Rare-earth sintered magnets made from such alloys exhibit excellent magnetic properties and can be manufactured under a broad optimal temperature range during sintering and solution treatment.
摘要:
A rare earth permanent magnet is prepared from a sintered magnet body of a R1—Fe—B composition wherein R1 is a rare earth element inclusive of Y and Sc, by forming a plurality of slits in a surface of the magnet body, disposing a powder on the magnet body surface, the powder comprising an oxide of R2, a fluoride of R3, or an oxyfluoride of R4 wherein each of R2, R3, and R4 is a rare earth element, and heat treating the magnet body and the powder below the sintering temperature in vacuum or in an inert gas.
摘要:
A suspension for magnetic head, for supporting a magnetic head slider on which a magnetic head for recording/reproduction of information on a magnetic recording medium is mounted, wherein one end of the suspension is fixed to a stator portion fixed to the tip end of a load beam of the suspension, a gimbal portion and a rotor portion oscillatably supported by metallic micro-beams formed by bending are provided on the side of the other end of the suspension, and the magnetic head slider is attached to the gimbal portion, whereby the rotor portion and the magnetic head slider attached to the gimbal portion as one body with the rotor portion can be oscillated in parallel to the surface of a magnetic recording disk, independently of the driving of the slider by a coarse actuator.
摘要:
An iron alloy strip having a gage of 0.1 to 5 mm and a magnetic field strength variation within the strip of 0 to 10 Hz, made of an iron alloy consisting essentially of, in % by weight, 0.0001-0.02% of C, 0.0001-5% of Si, 0.001-0.2% of Mn, 0.0001-0.05% of P, 0.0001-0.05% of S, 0.0001-5% of Al, 0.001-0.1% of O, 0.0001-0.03% of N, 0-10% of Co, 0-10% of Cr, 0.01-5% in total of Ti, Zr, Nb, Mo, V, Ni, W, Ta and/or B, and the balance of Fe, and having a saturation magnetic flux density of 1.7-2.3 Tesla, a maximum relative permeability of 1,200-22,000 and a coercive force of 20-380 A/m is suited for use as yokes in voice coil motor magnetic circuits. The iron alloy strip is highly resistant to corrosion and eliminates a need for a corrosion resistant coating.