Abstract:
No related magnetoresistive multi-layered films made from a metal magnetic film provide sufficient reproducing output power. A high-polarized layer with a thickness of 10 nm or less is formed as a Fe-rich Fe—O layer in contact with the interface of a non-magnetic intermediate layer and the resulting layers are heat treated to form a multi-layered film of ferromagnetic Fe—O layers, achieving a magnetoresistive element having high magnetoresistance.
Abstract:
There are provided a magnetoresistive sensor of the type of flowing a signal sensing current perpendicular to the plane to improve resolution at reproducing a signal, a magnetic head using the magnetoresistive sensor, and a magnetic disk apparatus.A magnetoresistive sensor comprising a substrate, a pair of magnetic shield layers consisting of a lower magnetic shield layer and an upper magnetic shield layer, a magnetoresistive sensor layer, disposed between the pair of magnetic shield layers, an electrode terminal for flowing a signal current perpendicular to the plane of the magnetoresistive sensor layer, and magnetic domain control layers for controlling Barkhausen noise of the magnetoresistive sensor layer, wherein the magnetic domain control layers disposed in contact with opposite ends of the magnetoresistive sensor layer consist of a material having high electric resistivity and with a specific resistance not less than 10 mΩcm so as to give the magnetoresistive sensor having excellent reproducing resolution. The sensor is used to provide a magnetic head having excellent reproducing resolution and a magnetic disk apparatus.
Abstract:
A magnetic reproducing head and a magnetic recording head. The magnetic reproducing head includes a GMR or TMR magnetic sensor, and a flux guide for introducing a magnetic flux into the magnetic sensor. At least a portion of the flux guide includes a material which is capable of permitting the magnetic flux to pass therethrough at a temperature not lower than a predetermined temperature Tp, but not permitting the magnetic flux to pass therethrough at a temperature lower than Tp. Light is irradiated to only a portion of the flux guide to cause the temperature of the irradiated portion to rise up to Tp or more, thereby permitting a magnetic flux to pass only through the irradiated portion, thus narrowing the track width of magnetic reproducing head when detecting recorded information from the magnetic recording medium.
Abstract:
A magnetic disc apparatus is disclosed, in which a magneto-resistance effect film converts a magnetic signal into an electrical signal by use of the magneto-resistance effect, a pair of electrodes supplies a signal detection current to the magneto-resistance effect film, and a magnetic domain control layer controls the magnetic domain of the magneto-resistance effect film. The magneto-resistance effect film, the electrodes and the magnetic domain control layer constitute a magnetic head of magneto-resistance effect type. An isolation film is formed in a magneto-sensitive portion of the magneto-resistance effect film between the magneto-resistance effect film and the magnetic domain control layer to break the magnetic coupling between the magneto-resistance effect film and the magnetic domain control layer.
Abstract:
A magnetoresistive head has a substrate (1) and, on the substrate, a magnetoresistive film (40) for converting a magnetic signal into an electric signal by using magnetoresistance effects and a pair of electrodes (60) for causing a signal detection current to flow through the magnetoresistive film. A pair of first domain wall suppressing layers (30) are arranged at opposite end portions of the magnetoresistive film, respectively, to apply a longitudinal magnetic bias to the magnetoresistive film. A second domain wall suppressing layer (45) is also provided for applying a longitudinal magnetic bias, which is weaker compared with the longitudinal magnetic bias applied by the first domain wall suppressing layers, to the magnetoresistive film (40).