Abstract:
Disclosed are novel methods for making cochleates and cochleate compositions that include introducing a cargo moiety to a liposome in the presence of a solvent. Also disclosed are cochleates and cochleate compositions that include an aggregation inhibitor, and optionally, a cargo moiety. Additionally, anhydrous cochleates that include a protonized cargo moiety, a divalent metal cation and a negatively charge lipid are disclosed. Methods of using the cochleate compositions of the invention, including methods of administration, are also disclosed.
Abstract:
An integrative DNA vector and one or more viral proteins having affinity for DNA are packaged in cochleate precipitates. The integrative DNA vector contains one or more therapeutic nucleotide sequences that are preferably positioned between DNA substrates for the proteins. Upon contact with a lipid bilayer of a target cell, the cochleate vector structure delivers one or more of the therapeutic nucleotide sequences and one or more proteins to the interior of the target cell. Upon entry into the cell, the proteins facilitate the integration of the therapeutic nucleotide sequence into the genome of the host cell.
Abstract:
A protein-lipid vesicle that can be used to make an autogenous vaccine comprises patient-specific antigen, adjuvant or immunomodulator, and lipid carrier. In addition, a negatively charged lipid component is desirably included. The autogenous vaccine is useful to treat individuals with chronic diseases, including chronic infectious diseases and neoplasias. The chronic infectious diseases that can be treated include disease caused by infection with human immunodeficiency viruses.