Abstract:
A method and configuration to optimize an entire traction system available on a helicopter including an auxiliary engine by allowing the engine to provide non-propulsive and/or propulsive power during flight. The auxiliary engine is coupled to participate directly in providing mechanical or electrical propulsive power and electrical non-propulsive power to the aircraft. An architecture configuration includes an on-board power supply network, two main engines, and a system for converting mechanical energy into electrical energy between a main gearbox to the propulsion members and a mechanism receiving electrical energy including the on-board network and power electronics in conjunction with starters of the main engines. An auxiliary power engine provides electrical energy to the mechanism for receiving electrical energy via the energy conversion system and a mechanism for mechanical coupling between the auxiliary engine and at least one propulsion member.
Abstract:
An aircraft turboprop engine (310) including at least a low-pressure body (12) and a high-pressure body (14), possibly also an intermediate-pressure body. At least one of the bodies includes a compressor. The low-pressure body drives a first gearbox (16) The turboprop engine also includes at least one load compressor (60) for supplying air to an air-conditioning circuit of an aircraft cabin. A rotor (61) of the load compressor is coupled to the low-pressure body. The load compressor (60) includes an air inlet (62) connected to a conduit (72) to bleed air from the compressor of the turboprop engine when all of the aforementioned bodies include only a single compressor, or from the compressor of the low-pressure body or the compressor of the intermediate-pressure body of the turboprop engine when all of the bodies include at least two compressors.
Abstract:
The invention relates to an aircraft turboprop engine (310) comprising at least a low-pressure body (12) and a high-pressure body (14), possibly also an intermediate-pressure body, at least one of said bodies comprising a compressor, the low-pressure body driving a propeller by means of a first gearbox (16), the turboprop engine also comprising means for supplying air to an air-conditioning circuit of an aircraft cabin, characterised in that said supply means comprise at least one compressor (60) of which the rotor (61) is coupled to the low-pressure body, said load compressor (60) including an air inlet (62) connected to means (72) for bleeding air from the compressor of the turboprop engine when all of the aforementioned bodies comprise only a single compressor, or from the compressor of the low-pressure body or the compressor of the intermediate-pressure body of the turboprop engine when all of the bodies comprise at least two compressors.
Abstract:
The invention relates to a method for mounting an engine module (1) in a support comprising a first structure (3) and a second structure (2) that is offset relative to the first structure (3), method intended for positioning at least a specified part (4) of the engine module (1) relative to an element (6) of the second structure (2) by means of an isostatic suspension connecting the engine module (1) to said first structure (3) by means of first connecting rods (10a, 10b, 10c, 10d) and to said second structure (2) by means of second connecting rods (10e, 10f), the length of said first and second connecting rods being defined in advance, method wherein the length of at least two (10c, 10f) of said first and second connecting rods is adjusted relative to the previously defined length thereof, in order to position said specified part (4) of the engine module (1) relative to said element (6) of the second structure (2) in said support. The invention also relates to said support comprising adjustable connecting rods, in an installation comprising in particular an auxiliary power unit for an aircraft.
Abstract:
The invention concerns a method for generating auxiliary power in an aircraft, comprising the step consisting of: starting up an auxiliary power unit (6) of the aircraft by supplying compressed air to the auxiliary power unit (6) from a supercharger (7), and transferring non-propulsive energy from the auxiliary power unit (6) to the aircraft. The invention also concerns a system (5) for generating auxiliary power in an aircraft and an aircraft implementing such a method.
Abstract:
The invention concerns a structure (3) for feeding air to an auxiliary power unit (2) of an aircraft (1) comprising a pressurized cabin (10) and an auxiliary power unit (2), the structure comprising: a pipe (30) for feeding air to the auxiliary power unit; a unit (4) for controlling the airflow fed to the auxiliary power unit; and a valve (31) for the intake of air outside the aircraft, disposed at the inlet of the feed pipe (30), the opening of the valve being driven by the control unit (4). The structure is characterized in that it further comprises a circuit (32) for injecting air from the pressurized cabin into the auxiliary power unit feed pipe. The invention also concerns a method for feeding air to an auxiliary power unit.
Abstract:
A method and a system for supplying electrical energy to an aircraft that is equipped with a plurality of loads to be powered, said power supply system comprising a plurality of power sources and an on-board energy management module, the energy management module being electrically connected to said power sources and to said loads to be powered. The energy management module is arranged so as to control a supply of power to at least one of said loads using at least two different power sources in parallel in the event of increased energy requirements, said load being initially powered by a single power source.
Abstract:
A system for supplying compressed air to a pneumatic network includes a load compressor, an air supply and a power shaft driving the load compressor. The system also includes in an air outlet of such load compressor, a connecting channel connected, on the one side, with a channel connected with the pneumatic network and, on the other side, with an air discharge conduct towards an exhaust nozzle. Air flow rate bleed valves are controlled by a processing unit via servo-loops as a function of the pressure sensors and the speed sensor.
Abstract:
A shaft for a turbine engine, the shaft having a cavity subdivided axially into first and second chambers. The shaft also includes a distributor member having an axial duct, a first radial orifice, and a second radial orifice. The axial duct has an open first end and a second end closed in the axial direction. The first radial orifice connects the second end of the axial duct to the first chamber in order to feed a first bearing with lubricating fluid, and the second radial orifice connects the second end of the axial duct to the second chamber to feed a second bearing with lubricating fluid. The first radial orifice and the second radial orifice of the distributor member are at substantially equal axial distances from the lubricating fluid inlet.