Abstract:
A bus structure includes multiple soft buses and a soft separation layer. These multiple soft buses are stacked side by side each other. The soft separation layer is sandwitched between two adjacent soft buses.
Abstract:
A bus structure includes multiple soft buses and a soft separation layer. These multiple soft buses are stacked side by side each other. The soft separation layer is sandwitched between two adjacent soft buses.
Abstract:
An improved thin film inductor design is described. A spiral geometry is used to which has been added a core of high permeability material located at the center of the spiral. If the high permeability material is a conductor, care must be taken to avoid any contact between the core and the spiral. If a dielectric ferromagnetic material is used, this constraint is removed from the design. Several other embodiments are shown in which, in addition to the high permeability core, provide low reluctance paths for the structure. In one case this takes the form of a frame of ferromagnetic material surrounding the spiral while in a second case it has the form of a hollow square located directly above the spiral.
Abstract:
The invention provides a method for fabricating a shallow trench isolation which is not susceptable to buried contact trench formation. The invention also provides immunity from the STI “kink effect,” as well as benefits associated with nitridation. The process begins by forming a pad oxide layer on a semiconductor substrate. A nitride layer is formed on the pad oxide layer. The nitride layer, the pad oxide layer, and the semiconductor substrate are patterned to form trenches. Next, a fill oxide layer is formed over the nitride layer, the pad oxide layer, and the semiconductor substrate. The fill oxide layer is chemical-mechanical polished, stopping on the nitride layer to form fill oxide regions. N2 ions are implanted into the fill oxide regions. An anneal is performed to form a buried oxynitride layer. The buried oxynitride layer is partially above the level of the top surface of the semiconductor substrate and partially below the level of the top surface of the semiconductor substrate. The nitride layer is removed. Then, the pad oxide layer and portions of the fill oxide regions are removed using the buried oxynitride layer as an etch stop, forming shallow trench isolations.
Abstract:
This invention provides a method for forming a self aligned contact without key holes using a two step sidewall spacer deposition. The process begins by providing a semiconductor structure having a device layer, a first inter poly oxide layer (IPO-1), and a conductive structure (such as a bit line) thereover, and having a contact area on the device layer adjacent to the conductive structure. The semiconductor structure can further include an optional etch stop layer overlying the first inter poly oxide layer. The conductive structure comprises at least one conductive layer with a hard mask thereover. A first spacer layer is formed over the hard mask and the IPO-1 layer and anisotropically etched to form first sidewall spacers on the sidewalls of the conductive structure up to a level above the bottom of the hard mask and below the level of the top of the hard mask such that the profile of the first sidewall spacers are not concave at any point. A second spacer layer is formed over the first sidewall spacers and anisotropically etched to form second sidewall spacers, having a profile that is not concave at any point. A second inter poly oxide layer is formed over the second sidewall spacers, the hard mask, and the IPO-1 layer, whereby the second inter poly oxide layer is free from key holes. A contact opening is formed in the second inter poly oxide layer and the first inter poly oxide layer over the contact area. A contact plug is formed in the contact openings.
Abstract:
A process for creating an insulator filled, shallow trench, in a semiconductor substrate, in which the insulator layer in the shallow trench, is not exposed to procedures used to remove defining composite insulator layers, has been developed. The process features creating a lateral recess, in a thick silicon nitride layer, used as a component of a composite insulator layer, where the composite insulator layer is used for subsequent definition of the shallow trench, in the semiconductor substrate. An insulator deposition, filling openings, and recesses, in the composite insulator layer, and filling the shallow trench, followed by removal of excess insulator fill, on the top surface of the composite insulator layer, results in the formation of a "T" shape insulator, comprised of an insulator shape, in the shallow trench, and comprised of a wider insulator shape, located in the composite insulator shape, with the lateral recess in the thick silicon nitride layer, and with the wider insulator shape, overlying the narrow, insulator shape, in the shallow trench. The insulator, in the shallow trench, is protected from the procedure used to remove components of the composite insulator layer, by the wider insulator shape.
Abstract:
A new method of forming an improved buried contact junction is described. A gate silicon oxide layer is provided over the surface of a semiconductor substrate. A polysilicon layer is deposited overlying the gate oxide layer. A hard mask layer is deposited overlying the polysilicon layer. The hard mask and polysilicon layers are etched away where they are not covered by a mask to form a polysilicon gate electrode and interconnection lines wherein gaps are left between the gate electrode and interconnection lines. A layer of dielectric material is deposited over the semiconductor substrate to fill the gaps. The hard mask layer is removed. The polysilicon layer is etched away where it is not covered by a buried contact mask to form an opening to the semiconductor substrate. Ions are implanted to form the buried contact. A refractory metal layer is deposited overlying the buried contact and the polysilicon gate electrode and interconnection lines and planarized to form polycide gate electrodes and interconnection lines. The dielectric material layer is removed. An oxide layer is deposited and anisotropically etched to leave spacers on the sidewalls of the polycide gate electrodes and interconnection lines to complete the formation of a buried contact junction in the fabrication of an integrated circuit.
Abstract:
An information handling system circuit board has an opening formed through it proximate a coupling point of an integrated circuit to the circuit board. The opening manages stress at the coupling point of the integrated circuit to the circuit board to reduce the risk of damage to the coupling point during deformation of the circuit board, such as when the circuit board is coupled to a chassis or when a component is pressed into the circuit board. In one embodiment, rectangular openings are formed at diagonally opposed corners of a BSA integrated circuit. In alternative embodiments, openings of varying shape, such as slots or curved slots, are formed at selected corners of the integrated circuit.
Abstract:
A clamp for fixing a photographic slide and/or a photographic negative includes a carrier and a cover for fixing the slide or negative onto the carrier. The carrier includes a first guide for holding the negative, and a second guide extended from the first guide for holding the photographic slide.
Abstract:
A method of manufacturing a memory device having embedded logic. The memory and logic FETS have two different two gate oxide 20 34 thicknesses. The method integrates (1) a salicide contact process 72 74 (logic devices) and dual gate (N+/P+) logic gate 24A 24B technology with (2) memory device Polycide with Self aligned Contact 80 Technology. The method comprises:(a) forming a first gate oxide layer 20, a first polysilicon layer 24, and a first gate cap layer 28 over said logic area 12;(b) forming memory gate structures 34 36 38 40 42A in memory area 14,(c) forming memory LDD regions 50 adjacent to said memory gate structures 24 26 28 40 in said memory area 14;(d) patterning said first gate oxide layer 20, said first polysilicon layer 24 and said first gate cap layer 28 over said logic area forming logic gate structures 20 24A & 20 24B;(e) forming spacers 66;(f) forming logic Source/drain regions 62;(g) using a salicide process to form self-aligned silicide logic S/D contacts 72 to said Source/drain regions 62, and to form self-aligned silicide logic gate contacts 74 to said logic gate structures 20 24B & 20 24A; and(h) forming self aligned polycide contacts 80 to said memory source/drain regions 50.