Abstract:
An electrical through-connection, or via, that passes through a substrate to a bus on a first surface of the substrate. The via may be configured with an interlock such that the electrically conductive core of the via is constrained to thermally expand towards the second surface, away from the bus, thus preventing damage to the bus. The interlock may be a local constriction or enlargement of the via near the first surface of the substrate. The via may be greater in length along the bus than a unit spacing of beams in a parallel microswitch array actuated in unison along the bus. The via may be narrower in width than in length, and may form a trapezoidal geometry that is larger at the second surface of the substrate than at the first surface.
Abstract:
A MEMS switch includes a substrate, a movable actuator coupled to the substrate, a substrate contact, a substrate electrode, and a conductive stopper electrically coupled to the movable actuator and structured to prevent the movable actuator from contacting the substrate electrode while allowing the movable actuator to make contact with the substrate contact.
Abstract:
Multiple microelectromechanical systems (MEMS) on a substrate are capped with a cover using a layer that may function as a bonding agent, separation layer, and hermetic seal. A substrate has a first side with multiple MEMS devices. A cover is formed with through-holes for vias, and with standoff posts for layer registration and separation. An adhesive sheet is patterned with cutouts for the MEMS devices, vias, and standoff posts. The adhesive sheet is tacked to the cover, then placed on the MEMS substrate and heated to bond the layers. The via holes may be metalized with leads for circuit board connection. The MEMS units may be diced from the substrate after sealing, thus protecting them from contaminants.
Abstract:
An electrical through-connection, or via, that passes through a substrate to a bus on a first surface of the substrate. The via may be configured with an interlock such that the electrically conductive core of the via is constrained to thermally expand towards the second surface, away from the bus, thus preventing damage to the bus. The interlock may be a local constriction or enlargement of the via near the first surface of the substrate. The via may be greater in length along the bus than a unit spacing of beams in a parallel microswitch array actuated in unison along the bus. The via may be narrower in width than in length, and may form a trapezoidal geometry that is larger at the second surface of the substrate than at the first surface.
Abstract:
An integrated spectrometer instrument, including an optical source formed on a chip, the optical source configured to generate an incident optical beam upon a sample to be measured. Collection optics formed on the chip are configured to receive a scattered optical beam from the sample, and filtering optics formed on the chip are configured to remove elastically scattered light from the scattered optical beam at a wavelength corresponding to the optical source. A tunable filter formed on the chip is configured to pass selected wavelengths of the scattered optical beam, and a photo detector device formed on the chip is configured to generate an output signal corresponding to the intensity of photons passed through the tunable filter.
Abstract:
A system and method for managing optical power for controlling thermal alteration of a sample undergoing spectroscopic analysis is provided. The system includes a moveable laser beam generator for irradiating the sample and a beam shaping device for moving and shaping the laser beam to prevent thermal overload or build up in the sample. The moveable laser beam generator includes at least one beam shaping device selected from the group consisting of at least one optical lens, at least one optical diffractor, at least one optical path difference modulator, at least one moveable mirror, at least one Micro-Electro-Mechanical Systems (MEMS) integrated circuit (IC), and/or a liquid droplet. The system also includes an at least two degree of freedom (2 DOF) moveable substrate platform and a controller for controlling the laser beam generator and the substrate platform, and for analyzing light reflected from the sample.
Abstract:
A micro-electromechanical system (MEMS) based current & magnetic field sensor includes a MEMS-based magnetic field sensing component having a capacitive magneto-MEMS component, a compensator and an output component for sensing magnetic fields and for providing, in response thereto, an indication of the current present in a respective conductor to be measured. In one embodiment, first and second mechanical sense components are electrically conductive and operate to sense a change in a capacitance between the mechanical sense components in response to a mechanical indicator from a magnetic-to-mechanical converter.
Abstract:
A micro-electromechanical system (MEMS) based current & magnetic field sensor includes a MEMS-based magnetic field sensing component a structural component comprising a silicon substrate and a compliant layer comprising a material selected from the group consisting of silicon dioxide and silicon nitride, a magnetic-to-mechanical converter coupled to the structural component to provide a mechanical indication of the magnetic field, and a strain responsive component coupled to the structural component to sense the mechanical indication and to provide an indication of the current in the current carrying conductor in response thereto.