摘要:
The present disclosure provides a global shutter CMOS pixel circuit and its image capturing method. The global shutter CMOS pixel circuit comprising a power supply unit, a pixel signal generating unit, a signal sampling and holding unit and a signal outputting unit. An output of the pixel signal generating unit is connected to an input of the signal sampling and holding unit. An output of the signal sampling and holding unit is connected to an input of the signal outputting unit. The output signal of the pixel and the photo-generated current are set to a logarithmic relationship, which effectively increases the signal dynamic range. Therefore, image signal transmission with high speed and high dynamic range can be achieved simultaneously. Furthermore, the pixels in the present disclosure can eliminate the process variations, which increases the consistency of the pixels.
摘要:
A method for hybrid wafer-to-wafer bonding, comprising: providing two silicon wafers with Cu pattern structures, a conventional Cu BEOL process is adopted on the silicon wafers to obtain the planarized surface with copper and dielectric; removing part of the Cu on the planarized surface of the Cu pattern structures by adopting an etching process to form a certain amount of Cu recesses; depositing a layer of bonding metal on the surface of the Cu by adopting a selective deposition process; performing surface activation on the bonding metal and the dielectric by adopting a surface activation process; aligning and pressing the two silicon wafers together to obtain the dielectric bonding; and obtaining the metal bonding through the annealing process. The sufficient metal bonding can be obtained at low annealing temperature according to the present invent, thereby the risk of dielectric delaminating caused by thermal expansion mismatch is reduced, which is conducive to reduce the difficulty of process integration, save process time and improve product yield.
摘要:
A line-end cutting method for fin structures of FinFETs formed by double patterning technology firstly utilizes the SiN hard mask lines to form fin structures and then performs lithography and etching processes to form line-end cuts. Since the depth of the line-end cuts is large, there is enough time and space to regulate the etching recipe so as to balance the etching rate of multiple layers including the spin-on-carbon layer, the SiN layer, the SiO2 layer and the silicon substrate, thereby forming the fin structures with line-end cuts having flatter bottom topography, preventing the formation of silicon protrusions or silicon cones during the etching process and improving the device electrical performance.
摘要:
A method is provided for designing an IC chip. The method includes receiving data from a pre-layout design process for the IC chip, routing a plurality of interconnecting wires to connect various devices of the IC chip, and extracting various circuit parameters. The method also includes simulating the IC chip using the extracted various circuit parameters to detect logic or timing error in the IC chip. The extracting the various circuit parameters includes establishing a statistical interconnect technology profile (ITP) file containing at least interconnect parasitic parameters based on correlations of interconnect layer geometric parameter variations.
摘要:
A manufacturing method is provided for fabricating a vertical channel gate-all-around MOSFET by epitaxy processes. The method includes growing a first epitaxial layer on a top semiconducting layer of a substrate; etching the first epitaxial layer and the top layer to form a first source/drain pattern in the top layer; etching the first epitaxial layer to form a vertical channel structure; then forming a gate dielectric layer on the vertical channel structure surface; forming a sandwich structure composed of a bottom spacer layer, a gate electrode layer and a top spacer layer; etching the top spacer layer and the gate electrode layer to form a gate pattern followed by forming a top spacer structure thereon; growing a second epitaxial layer and etching to form a second source/drain pattern.
摘要:
A pixel structure of a CMOS image sensor pixel structure and a manufacturing method thereof. The structure comprises a photosensitive element (37) and a multi-layer structure of a standard CMOS device arranged on the silicon substrate (31). A deep groove (38) having a light-transmitting space therein is formed above the photosensitive element, a side wall of the deep groove is surrounded by a light reflection shielding layer (39) continuously arranged in a longitudinal direction to reflect the light incident on the light reflection shielding layer. The side wall of the deep groove is surrounded by metal interconnects, vias, contact holes and polysilicon in annular configurations, thus the incident light on the deep grove is substantially completely reflected, which avoids the optical crosstalk and effectively improves the optical resolution and sensitivity of the pixel and the performance and reliability of the chip.
摘要:
A method is disclosed for manufacturing a semiconductor device with a copper interconnect structure. The method includes providing a substrate, forming a first interconnect dielectric layer on the substrate, and forming a second interconnect dielectric layer on a surface of the first interconnect dielectric layer. The method also includes forming a plurality of conduits extending through the first interconnect dielectric layer and the second interconnect dielectric layer, and depositing copper in the plurality of conduits to form a copper interconnect layer of the copper interconnect structure. Further, the first interconnect dielectric layer, between neighboring conduits, contains cavities such that dielectric constant of the first interconnect dielectric layer is reduced. The second interconnect dielectric layer seals the top of the cavities, the substrate is the bottom of the cavities, and a width of the top of the cavities is less than a width of the bottom of the cavities.
摘要:
A method is provided for designing an IC chip. The method includes receiving data from a pre-layout design process for the IC chip, routing a plurality of interconnecting wires to connect various devices of the IC chip, and extracting various circuit parameters. The method also includes simulating the IC chip using the extracted various circuit parameters to detect logic or timing error in the IC chip. The extracting the various circuit parameters includes establishing a statistical interconnect technology profile (ITP) file containing at least interconnect parasitic parameters based on correlations of interconnect layer geometric parameter variations.
摘要:
A method is provided for manufacturing a semiconductor device with a metal film resistor structure. The method includes providing an insulation layer on the semiconductor device. A lower copper interconnect is formed in the insulation layer. The method also includes forming a cap layer on the insulation layer and the lower copper interconnect and etching the cap layer based on a single photolithography mask to form a window exposing portion of the lower copper interconnect and portion of the insulation layer. Further, the method includes forming a metal film layer on the cap layer and inside the window such that exposed portion of the lower copper interconnect is connected with part of the metal film layer within the window. The method also includes performing a chemical mechanical polishing (CMP) process to form a metal film resistor based on the metal film layer. The metal film resistor is connected with the portion of the lower copper interconnect.
摘要:
A radio frequency identification (RFID) device is disclosed. The RFID device includes a silicon substrate having a top side and a bottom side. The RFID device also includes a plurality of circuitry layers formed on the top side of the substrate, and the plurality of circuitry layers include at least a core circuitry and an on-chip antenna. Further, the RFID device includes a plurality of deep openings formed in the substrate on the bottom side under the plurality of circuitry layers. The plurality of deep openings are arranged in an array and through a substantial portion of the substrate, and a remaining portion of the substrate unreached by the plurality of deep openings separates the plurality of deep openings and the plurality of circuitry layers.