Abstract:
Certain embodiments of the present disclosure provide a method for efficient scanning of the neighboring base stations for handover by a mobile station operating in frequency division duplex while maintaining the communication with a serving base station.
Abstract:
A base station and a subscriber station may negotiate paging parameters so that the subscriber station can enter idle mode. After the subscriber station has entered idle mode, the base station may change at least one paging parameter at the base station. The base station may direct the subscriber station to change at least one paging parameter at the subscriber station after the subscriber station has entered idle mode. The subscriber station may change at least one paging parameter at the subscriber station after the subscriber station has entered idle mode.
Abstract:
A base station may generate a subpacket of system overhead messages that is designed so that a subscriber station improves a success rate of decoding the system overhead messages by accumulating multiple received subpackets. The base station may repeatedly broadcast the subpacket to subscriber stations. When a subscriber station receives a subpacket of system overhead messages, the subscriber station may combine the subpacket with previously received subpackets and attempt to decode the system overhead messages from this combination.
Abstract:
Certain embodiments of the present disclosure present methods and apparatuses that enable a mobile station (MS) to selectively reject downlink (DL) data during idle mode. The MS may determine whether to reject the pending DL data based on information about the data. This information may be provided by a base station (BS) that is part of the access service network (ASN) that is retaining the DL data. The information provided by the BS may, for instance, include service flow information related to the pending DL data. In certain embodiments, the information may include one or more internet protocol (IP) packets that are part of the pending DL data.
Abstract:
By controlling whether operations are offloaded to a protocol stack hardware accelerator as a function of data rate, power consumption may be reduced, for example, when data rates result in fragmented or segmented data not suitable for processing by the stack hardware accelerator.
Abstract:
Certain embodiments of the present disclosure relate to methods for improving a service flow of a mobile device based upon a different level of its available battery power. If the battery power availability is below a predefined threshold, then one or more power-saving techniques can be triggered that increase an air time of the mobile device and provide savings of power consumption at different rates using a different level of clock rate.
Abstract:
Certain embodiments of the present disclosure improve a robustness of some critical MAC management response massages transmitted from a base station (BS) to a mobile station (MS). In this way, a reliability of transmission can be increased and a messaging failure that results in out of sync state between the MS and the BS can be avoided.
Abstract:
Certain embodiments of the present disclosure relate to methods for handling an emergency call along with its position location in the WiMAX network, and for performing a handover of the emergency call for a multi-mode mobile station that supports multiple wireless standards.
Abstract:
Methods and apparatus for expressing two or more extended information elements (IEs) of a MAP message using a single Extended or Extended-2 Downlink Interval Usage Code (DIUC) or Uplink Interval Usage Code (UIUC) in an orthogonal frequency-division multiplexing (OFDM) or orthogonal frequency division multiple access (OFDMA) frame are provided. This enhancement, called extensible Extended IE mapping, allows the WiMAX network to include more IEs into the DL-MAP and UL-MAP messages as the IEEE 802.16 family of standards evolves. Without this enhancement, all of the new IEs may most likely have to be included in the data bursts, and a user terminal (e.g., a mobile station) cannot decode these data-burst IEs unless the user terminal receives the Downlink Channel Descriptor (DCD) message(s).