Abstract:
Techniques for prioritizing inter-frequency measurements are disclosed. The method may include identifying a first frequency for measurement that is associated with mobility of an access terminal for transitioning from a serving primary cell to a target primary cell, identifying a second frequency for measurement that is associated with supplemental capacity of the access terminal for adding a secondary cell to operate in conjunction with the serving primary cell, prioritizing the mobility of the access terminal or the supplemental capacity of the access terminal, selecting for measurement in a measurement period either the first frequency or the second frequency based on the prioritizing, and triggering a measurement for the selected frequency.
Abstract:
Various aspects described herein relate to maintaining data continuity for a user equipment (UE). A request can be received at a first node of a first network from at least one of a second node of the first network or a second network to update a location of the UE. A type of the request can be determined based at least in part on an identifier in the request. The request can be acknowledged without instructing a third node of the first network or the second network to cancel a context of the UE based at least in part on the type of the request.
Abstract:
The present disclosure presents aspects for managing performance of a wireless network. For example, the aspects may include identifying a backhaul condition at a small cell in the wireless network wherein the backhaul condition is associated with one or more of a backhaul latency measurement, a backhaul error rate, or a backhaul jitter value at the small cell and triggering an action at the small cell in response to identifying the backhaul condition at the small cell, wherein triggering the action at the small cell includes modifying one or more resource management parameters at the small cell based on the backhaul condition. As such, performance of a wireless network may be managed.
Abstract:
The present disclosure presents a method and an apparatus for self-configuring a physical cell identify (PCI) at a cell upon detecting a PCI confusion at a neighbor cell. For example, the method may include detecting that a PCI confusion exists at a second cell based on a message (e.g., configuration update message or a X2 setup response message) received from the second cell. The first cell may initiate a timer that is selected from a first timer and a second timer, the first timer longer in duration than the second timer. The first cell then configures a new PCI for the first cell when the timer expires or maintains a current PCI for the first cell when the timer is reset prior to expiration. As such, self-configuration of PCI at a cell may be achieved.
Abstract:
A timer parameter used for transitioning between radio protocol states is adapted based on a change of a handover parameter. For example, as a direct result of a change in a handover parameter such as time-to-trigger, offset, or hysteresis, an inactivity timer that is used for switching an access terminal from a connected state to an idle state may be adapted. As another example, as a direct result of a change in a handover parameter, a radio link failure (RLF) timer that is used for switching an access terminal to an RLF state may be adapted.
Abstract:
The present disclosure presents a method and an apparatus for a light active estimation mechanism for backhaul management at a small cell base station. For example, the method may include transmitting a first data packet from the small cell base station to a network entity, receiving a second data packet from the network entity in response to the transmission, calculating a time delay between the transmitting of the first data packet and the receiving of the second data packet, and determining whether or not a backhaul of the small cell base station is congested based on the calculated time delay. As such, light active estimation mechanism for backhaul management at a small cell base station may be achieved.
Abstract:
The present disclosure presents a method and an apparatus for calibrating a small cell base station for backhaul management. For example, the method may include exchanging backhaul probing messages with a probing server by initiating a plurality of probing packets at the small cell base station, wherein the exchanging is performed over a backhaul after determining that a full queue condition associated with the backhaul is satisfied, computing calibration statistics for the backhaul based on characteristics associated with the backhaul probing messages, and adjusting one or more backhaul parameters of the small cell based on the calibration statistics. As such, calibration of a small cell base station for backhaul management may be achieved.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for modified power management for UEs in a wireless communication system that utilizes one or more RANs for communication. For example, certain aspects of the present disclosure relate to a technique for controlling when the UE is placed in a low power state in the first RAN based, at least in part, on inactivity of the UE in the first RAN. Certain aspects of the present disclosure also relate to controlling when to modify one or more network bearers between the first RAN or the second RAN and the core network based, at least in part, on at least one of inactivity on the one or more network bearers or inactivity in both the first RAN and the second RAN. According to certain aspects, the first RAN may include a WWAN and the second RAN may include a WLAN.
Abstract:
The present disclosure presents a method and an apparatus for distributed updating of a self organizing network. For example, the disclosure presents a method for transmitting, via a transmitting component at a base station, a portion of data collected at the base station to a network entity, wherein the data collected at the base station is received by the base station from one or more user equipments (UE) in communication with one or more base stations, wherein the base station is one of the one or more base stations, receiving feedback, from the network entity, associated with one or more network parameters of the base station, wherein the feedback received from the network entity is determined at the network entity at least based on the portion of data transmitted from the one or more base stations to the network entity, and updating the one or more network parameters at the base station based on the feedback received from the network entity and local information at the base station. As such, distributed updating of a self organizing network may be achieved.
Abstract:
Methods and apparatus for communication comprise aspects that include performing a power management procedure for configuring a subset of network entities to receive one or more of downlink signal measurements and/or one or more uplink signal measurements. The methods and apparatus further comprise aspects that include storing the one or more one or more of downlink signal measurements and/or one or more uplink signal measurements associated with the subset of network entities at a database for managing transmit power at the subset of network entities. Moreover, the methods and apparatus comprise aspects that include adjusting a transmit power value of at least one of the subset of network entities from a first transmit power value to a second transmit power value based at least in part on the one or more of downlink signal measurements and/or one or more uplink signal measurements.