Abstract:
An example method can include monitoring a network to identify flows between nodes in the network. Once flows have been identified, the flows can be tagged and labelled according to the type of traffic they represent. If a flow represents malicious or otherwise undesirable traffic, it can be tagged accordingly. A request can then be made for a reputation score of an entity which can identify one or more nodes of the network.
Abstract:
An approach for establishing a priority ranking for endpoints in a network. This can be useful when triaging endpoints after an endpoint becomes compromised. Ensuring that the most critical and vulnerable endpoints are triaged first can help maintain network stability and mitigate damage to endpoints in the network after an endpoint is compromised. The present technology involves determining a criticality ranking and a secondary value for a first endpoint in a datacenter. The criticality ranking and secondary value can be combined to form priority ranking for the first endpoint which can then be compared to a priority ranking for a second endpoint to determine if the first endpoint or the second endpoint should be triaged first.
Abstract:
In one embodiment, a method includes receiving at an analytics module operating at a network device, network traffic data collected from a plurality of sensors distributed throughout a network and installed in network components to obtain the network traffic data, identifying at the analytics module, Domain Name System (DNS) exchanges within the network, associating at the analytics module, the DNS exchanges with process, user, and host information, and identifying at the analytics module, anomalies in the DNS exchanges. An apparatus and logic are also disclosed herein.
Abstract:
Systems, methods, and computer-readable media are provided for determining whether a node in a network is a server or a client. In some examples, a system can collect, from one or more sensors that monitor at least part of data traffic being transmitted via a pair of nodes in a network, information of the data traffic. The system can analyze attributes of the data traffic such as timing, port magnitude, degree of communication, historical data, etc. Based on analysis results and a predetermined rule associated with the attributes, the system can determine which node of the pair of nodes is a client and which node is a server.
Abstract:
Systems, methods, and computer-readable media for updating configurations in sensors deployed in multi-layer virtualized environments. In some examples, a system can track information of sensors and collectors in the network. In response to determining that a specific collector becomes unavailable (e.g., the specific collector is down, offline or becomes unsupported), the system can determine affected sensors corresponding to the specific collector, determine a new collector among active collectors of the network for each of the affected sensors, and dynamically update configuration and settings of the affected sensors to maintain proper collector-to-sensor mappings and other settings on the affected sensors.
Abstract:
Systems, methods, and non-transitory computer-readable storage media for a miscabling detection protocol. One or more switches can periodically send miscabling protocol (MCP) packets on non-fabric ports on all configured EPG VLANs. A first switch located at a network fabric receives a miscabling protocol (MCP) packet indicating an identity of an originating switch and a port number of an originating port of the MCP packet via a receiving port on the first switch, wherein the MCP packet is received from an external network connected to the receiving port, and wherein the originating switch and originating port are also located at the network fabric and connected to the external network. Based on the MCP packet, the first switch then detects a loop between the receiving port, the originating port, and the external network. Next, the first switch blocks the receiving port or the originating port in response to detecting the loop.
Abstract:
Presented herein are techniques useful in a network comprising a plurality of network nodes each configured to apply one or more service functions to traffic that passes through the respective network nodes. A network node receives packets encapsulated in a service header that includes information defining a first set of context headers stacked into an association of metadata that is relevant to one or more service functions within a service path comprised of one or more network nodes. The network node performs at least one of the service functions in the service path and rewrites the service header with a second set of context headers. The second set of context headers include metadata derived from performing the service function(s) at the network node.
Abstract:
Presented herein are techniques useful in a network comprising a plurality of network nodes each configured to apply one or more service functions to traffic that passes through the respective network nodes. A network node receives packets encapsulated in a service header that includes information defining a first set of context headers stacked into an association of metadata that is relevant to one or more service functions within a service path comprised of one or more network nodes. The network node performs at least one of the service functions in the service path and rewrites the service header with a second set of context headers. The second set of context headers include metadata derived from performing the service function(s) at the network node.
Abstract:
A method is provided in one example embodiment and includes receiving a request for a service that involves phasor measurement unit (PMU) data; identifying a service device in a network to perform the service; and multicasting one or more results of the service to a group of subscribers identified by a multicast group address. In more particular embodiments, particular PMU data is redirected to the service device via a service insertion architecture (SIA) protocol. In addition, the service can include replicating packets and masking a subset of traffic for forwarding to a first hop router of the network. In certain example instances, metadata is used in order to apply the service to certain traffic propagating in the network.
Abstract:
Disclosed herein are methods of forwarding packets on a network, such as a leaf-spine network having leaf devices and spine devices. The methods may include receiving a packet at an ingress leaf device, and determining based, at least in part, on a header of the packet whether the packet is to be transmitted to a spine device. The methods may further include ascertaining based, at least in part, on a header of the packet whether to perform encapsulation on the packet, encapsulating the packet according to a result of the ascertaining, and then transmitting the packet to a spine device according to a result of the determining. Also disclosed herein are network apparatuses which include a processor and a memory, at least one of the processor or the memory being configured to perform some or all of the foregoing described methods.