Abstract:
A fiber grating demodulation system for enhancing spectral resolution by finely adjusting a light splitting grating, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, and a linear array detector. The laser pump source, the wavelength division multiplexer, the fiber Bragg grating are connected in sequence, the wavelength division multiplexer is connected to the diaphragm. Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating, a reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror, the light splitting grating, and the imaging focus mirror in sequence, and is finally converged to the linear array detector.
Abstract:
A spectrometer (1) comprises a light source (2), a monochromator (3) with at least one diffraction grating (4), a monochromator housing (5), an order sorting filter (7), a microplate receptacle (12) and a controller (6). The order sorting filter (7) of the spectrometer (1) comprises a substrate (23), a first optical thin film (24) and a second optical thin film (25), wherein, in a spatially partly overlapping and interference-free manner, the first optical thin film (24) is arranged on a first surface (26) and the second optical thin film (25) is arranged on a second surface (27) of the substrate (23). A spectrometer (1) equipped with a respective order sorting filter is used in a scanning method for detecting the absorption spectrum of samples examined in wells (14) of microplates (13).
Abstract:
A compact spectrometer includes an excitation light source configured to generate excitation light and arranged to illuminate a spot on a sample. A dispersive element includes at least one movable component and spatially separates output light emanating from the sample in response to the excitation light into a plurality of different wavelength bands. A moveable component of the dispersive element causes the plurality of different wavelength bands of the output light to be scanned across a detector. The detector includes at least one light sensor that senses the wavelength bands of the output light and generates an output electrical signal in response to the sensed output light.
Abstract:
The invention provides spectroscopic systems and spectrometers employing an optical interference filter module having a plurality of bandpass regions. In certain embodiments, the systems include a mechanism for wavelength tuning/scanning and wavelength band decoding based on an angular motion of one or more filters. A spectral processing algorithm separates the multiplexed wavelength-scanned bandpass regions and quantifies the concentrations of the analyzed chemical and/or biological species. The spectroscopic system allows for compact, multi-compound analysis, employing a single-element detector for maximum performance-to-cost ratio. The spectroscopic system also allows for high-sensitivity measurement and robust interference compensation.
Abstract:
A fiber grating demodulation system for enhancing spectral resolution by finely adjusting a light splitting grating, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, and a linear array detector. The laser pump source, the wavelength division multiplexer, the fiber Bragg grating are connected in sequence, the wavelength division multiplexer is connected to the diaphragm. Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating, a reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror, the light splitting grating, and the imaging focus mirror in sequence, and is finally converged to the linear array detector.
Abstract:
Aspects of a tandem dispersive range monochromator and data knitting for the monochromator are described herein. In one embodiment, the monochromator includes a tandem diffraction grating, a grating drive motor that rotates the tandem diffraction grating to provide, by diffraction of broadband light, first dispersed wavelengths of light and second dispersed wavelengths of light, a detector that detects a first reflection from the first dispersed wavelengths of light and a second reflection from the second dispersed wavelengths of light, and processing circuitry that knits together data values from the first reflection and data values from the second reflection to provide a spectrum of combined data values. By using a tandem diffraction grating having different dispersive surfaces, measurements of relatively high precision and quality may be taken throughout a wider spectral range, and the measurements may be knitted together to provide a spectrum of combined data values.
Abstract:
An ICP emission spectrometer is schematically configured to include an inductively coupled plasma generation unit, a light condensing unit, a spectroscope, a two-dimensional detection unit and a controller. The two-dimensional detection unit includes a CCD image sensor which has multiple pixels laid in a planar shape and detects emission light by causing the emission light emitted from the spectroscope to be imaged on the multiple pixels. Then, the controller determines a pixel used in detecting the emission light among the multiple pixels in accordance with an imaging shape of detection-targeted emission light.
Abstract:
A fluorescence hyperspectral microscopy system featuring structured illumination and parallel recording includes a light projection sub-system, a detection sub-system, and an electrical controller. The light projection sub-system includes a digital light processing (DLP) module for generating linear excitation light, a first lens set, an optical path allocation element, and an objective lens. The detection sub-system includes a second lens set, a frequency-dividing reflection element, a two-dimensional light detector, and a light collection element. With the detection sub-system performing detection in conjunction with the light projection sub-system, and the electrical controller controlling the DLP module, a two-dimensional moving platform, and the two-dimensional light detector, the fluorescence hyperspectral microscopy system provides increased resolution and can obtain accurate information in spatial and spectral dimensions and hence a four-dimensional hyperspectral image of the object under detection.
Abstract:
A printer that incorporates a spectrometry device includes a spectroscope, a distance measurer, and a spectrometry unit. The spectroscope includes a wavelength-selective interference filter on which light from a position of measurement in a medium is incident. The distance measurer measures the distance between the position of measurement and the spectroscope, and the spectrometry unit performs spectrometry at the position of measurement by using the spectroscope and correct a measured value obtained by the spectrometry based on the measured distance.
Abstract:
In some aspects, a device for apportioning granular samples includes a sample feeder defining a conduit, the conduit including a first opening to receive the granular samples and a second opening. The device includes a shuttle operably coupled to the sample feeder to receive the granular samples from the conduit via the second opening. The shuttle is configured to apportion the granular samples to incrementally enter a sample chamber to be analyzed. The device includes an outlet conduit fluidly coupled to the sample chamber and configured to permit the sample chamber to be evacuated.