Abstract:
A wireless device may utilize enhanced OBSS identification techniques to determine whether an interfering transmission is associated with an OBSS. In an example, a wireless device may receive a WLAN packet that includes a preamble and a data region. The wireless device may analyze the preamble to determine whether the WLAN packet is an OBSS packet. If the wireless device determines there is insufficient information in the preamble to identify the WLAN packet as an OBSS packet, the wireless device may decode a portion of the data region (e.g., a MAC header) to determine if the WLAN packet is an OBSS packet. Prior to declaring a successful decoding of the MAC header, the wireless device may confirm the MAC header has been received reliably. Additionally or alternatively, BSS identifiers may be included in the data region and used to determine if the WLAN packet is associated with an OBSS.
Abstract:
Systems, methods, and devices for high-efficiency wireless frequency division multiplexing are provided. A method includes determining, at an access point, a performance characteristic for each wireless device in a set of wireless devices associated with the access point. The method further includes categorizing each wireless device in the set into at least a first and second subset of wireless devices based on the performance characteristic. The method further includes receiving communications from the first subset of wireless devices on a first set of wireless frequencies. The method further includes receiving communications from the second subset of wireless devices on a second set of wireless frequencies, the second set of wireless frequencies being a subset of the first. The first set of wireless devices have a higher performance characteristic than the second set of wireless devices.
Abstract:
Methods, systems, and devices are described for wireless communication at a station. The station identifies a first set of enhanced distributed channel access (EDCA) parameters for a first access category based at least in part on a first traffic type and a determination that a multiple user (MU) frame is to be transmitted, and contends to gain access for a transmission opportunity over a shared radio frequency spectrum band to communicate with a plurality of other stations in a MU mode. The contention is based at least in part on the first set of EDCA parameters.
Abstract:
Certain aspects of the present disclosure relate generally to wireless communications, and more specifically to systems, methods, and devices for staggered primary channel selection for WiFi. According to certain aspects, a method for wireless communications is provided. The method may be performed, for example, by an access point (AP). The method generally includes obtaining information regarding neighbor basic service sets (BSSs), selecting a primary channel based on the obtained information, and output for transmission a message signaling an intention to communicate using the selected primary channel.
Abstract:
A method of enabling data to be relayed between an access point (AP) and a target station (STA). The AP identifies the target STA based at least in part on a medium usage efficiency of the target STA. The AP further sends a relay selection trigger to the target STA to cause the target STA to broadcast a relay selection request to a set of candidate STAs. The relay selection request includes a set of metrics pertaining to a direct link between the AP and the target STA. The AP then receives one or more relay selection responses from one or more candidate STAs in the set of candidate STAs based at least in part on the set of metrics and selects a relay STA from the set of candidate STAs based at least in part on the one or more relay selection responses.
Abstract:
Methods, systems, and devices are described for improve network performance, such as throughput and PER, by allowing nodes to adjust energy detection (ED) threshold levels. For example, a method for Wi-Fi wireless communication includes determining, by a first node, an ED threshold level for a second node of a wireless network based at least in part on a metric for the first node. The method may also include signaling, from the first node to the second node, an ED level set element that indicates the determined ED threshold level. In another example, a method includes signaling, by a first node, an ED level adjustment capability of the first node to one or more nodes in a wireless network.
Abstract:
A user terminal for multiple-user wireless communication is provided, comprising a transmit buffer configured to store uplink data for transmission. The user terminal comprises a processor configured to generate a request to transmit frame in response to uplink data being present in the transmit buffer, and initiate a transmit timer for determining when to transmit the request to transmit frame. The user terminal comprises a transmitter configured to transmit the request to transmit frame when the transmit timer expires or when the uplink data present in the transmit buffer exceeds a threshold amount. The user terminal comprises a receiver configured to receive a clear to transmit frame from an access point based on the transmitted request to transmit frame. The transmitter is further configured to transmit the uplink data present in the transmit buffer, concurrently with at least one other user terminal transmitting uplink data, to the access point at a specified time based on receiving the clear to transmit frame addressed to the user terminal.
Abstract:
Methods and apparatus for adjusting clear channel assessment levels are disclosed herein. One aspect of the present disclosure provides a method of adjusting deferral on a first wireless communication network. The method includes determining a first distance between the first wireless communication network and a second wireless communication networks operating on a shared or partially-shared channel, determining an adjustment to a deferral mechanism based at least in part on the first distance, and transmitting an indication to one or more stations in the first wireless communication network, the indication based at least in part on the adjustment to the deferral mechanism.
Abstract:
Systems, methods, and devices detect and managing the presence of bursty interference on a wireless communication system. A method of detecting the presence of bursty interference on a wireless network includes receiving, at a wireless device, a message from a transmitting device. The method further includes determining whether the message includes errors caused by bursty interference. The method further includes suspending a channel tracking when bursty interference is detected. The method may further include reporting bursty interference to the transmitting device when bursty interference is detected.
Abstract:
A method for configuring channel access parameters in a wireless communication system includes selecting an element identification (ID) from a plurality of element IDs. Each of the plurality of element IDs identifies an enhanced distributed channel access (EDCA) parameter set element comprising at least one channel access parameter for at least one subset of wireless devices in a group of wireless devices. The selected element ID is identifiable by wireless devices of the group of wireless devices and not identifiable by other wireless devices. The method further includes generating the EDCA parameter set element for setting the at least one channel access parameter for each wireless device in the at least one subset. The EDCA parameter set element includes the selected element ID. The method further includes transmitting the EDCA parameter set element to at least one wireless device in the at least one subset of wireless devices.