Abstract:
Aspects of the present disclosure provide synchronization techniques for user equipment (UEs) that may be otherwise unable to support sidelink communication a synchronized UE and may have also lost global navigation satellite system (GNSS) and/or Evolved Node Base Stations (eNBs) as a synchronization source. In such instance, the unsynchronized UE may utilize reference signals (RS) from the data packets received from other UEs to track the timing and perform autonomous timing adjustments based thereon for synchronized packet transmission or reception.
Abstract:
An aspect of the present disclosure includes methods, systems, and computer-readable media for transmitting a first message including sidelink information and location information of a peer UE, receiving a second message including radio resource control information, transmitting a buffer status report, receiving a grant for one or more resources in response to the buffer status report after a successful peer UE search, and transmitting a vehicle-to-vehicle message to the peer UE via the one or more resources.
Abstract:
Aspects of the disclosure relate to a method of operating a scheduled entity for wireless communication. In some aspects, the scheduled entity determines to modify a first quality of service (QoS) level for a data transmission from the first device to a second device, wherein the first device is configured to communicate with the second device through a direct wireless communication link, and wherein the first QoS level is requested by an application of the first device. The scheduled entity modifies the first QoS level to a second QoS level, wherein the direct wireless communication link is able to support the second QoS level and is unable to support the first QoS level. The scheduled entity transmits the data transmission based on the second QoS level.
Abstract:
Various aspects related to frequency biasing to compensate for frequency variations caused by Doppler shift in V2V communication systems are described. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus, e.g., a UE, may be configured to determine a velocity of the apparatus, and determine a frequency biasing adjustment based on the determined velocity of the apparatus. The apparatus may be further configured to communicate with UE based on an adjusted carrier frequency determined based on a carrier frequency and the determined frequency biasing adjustment. In some configurations, a driving environment of the apparatus maybe considered, and the frequency biasing adjustment is determined further based on the determined driving environment.
Abstract:
A method for communication includes transmitting a listen before talk (LBT) communication symbol in a communication frame, the LBT communication symbol defining an amount of resource anticipated for control information and data, transmitting a control channel using the amount of resource defined by the communication symbol, and transmitting a data channel using the amount of resource defined by the communication symbol.
Abstract:
Improvements may be made for the congestion control considering different technologies, types of radio resources, and priorities of different packets. The apparatus may be a UE. The UE determines a channel busy ratio (CBR). The UE determines one or more channel resource utilization limits based on the CBR, wherein each channel resource utilization limit of the one or more channel resource utilization limits corresponds to a respective packet priority. The UE controls transmission of a plurality of packets based on the one or more channel resource utilization limits, each packet of the plurality of packets being associated with a respective packet priority.
Abstract:
Aspects described herein generally relate to communicating buffer status reports (BSR) in wireless communications. A BSR can be generated at a device indicating a size of each of a plurality of messages stored in a buffer of the device for communicating from the device to one or more other devices. The BSR can be transmitted to a base station to request resources for communicating one or more of the plurality of messages to the one or more other devices.
Abstract:
A UE may move out of range of a network. Accordingly, the UE may use a relay node to communicate. To manage the relay node, a wireless device such as the UE may receive a relay search message from a second UE requesting a relay UE to establish a connection to the network through the relay UE. The UE may transmit a message to a base station informing the base station of the relay search message from the second UE. The UE may receive an initiate relay association procedure message from the base station, the initiate relay association procedure message informing the first UE that the first UE has been selected by the base station to initiate a relay association procedure with the second UE. The UE may transmit a relay association message to the second UE including a request to be the relay UE for the second UE.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives a priority for performing a wide area network (WAN) operation or a device-to-device (D2D) operation using a downlink receive chain, and performs the WAN operation or the D2D operation using the downlink receive chain according to the priority. In another aspect, the apparatus determines downlink resources on which a WAN operation is performed, refrains from scheduling the WAN operation on the downlink resources when the WAN operation is not scheduled or expected to be scheduled on the downlink resources, and sends to a device priority information indicating a priority for the device to perform the WAN operation or the D2D operation using a downlink receive chain when the WAN operation is scheduled or expected to be scheduled on the downlink resources.