LAYER-SPECIFIC FEEDBACK PERIODICITY
    203.
    发明公开

    公开(公告)号:US20230361821A1

    公开(公告)日:2023-11-09

    申请号:US18246025

    申请日:2020-11-25

    CPC classification number: H04B7/0486 H04B7/0645

    Abstract: Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive, from a base station, a channel state information (CSI) configuration indicating a first feedback reporting periodicity for a dominant, or strong, spatial layer and a second feedback reporting periodicity for a non-dominant, or weak, spatial layer. The UE may transmit a first CSI report for at least the dominant spatial layer according to the first feedback reporting periodicity. The UE may transmit a second CSI report for the non-dominant spatial layer according to the second feedback reporting periodicity. In some cases, for aperiodic reporting, the UE may be triggered by downlink control information to report CSI for the dominant spatial layer. In some cases, the CSI configuration may indicate different codebooks for the dominant and non-dominant spatial layers.

    PARTIAL FREQUENCY SOUNDING FOR WIRELESS COMMUNICATION

    公开(公告)号:US20230344590A1

    公开(公告)日:2023-10-26

    申请号:US18005092

    申请日:2020-09-24

    CPC classification number: H04L5/0051 H04L5/0012 H04W72/232

    Abstract: Aspects relate to sounding on a subset of available sounding resources. A user equipment (UE) may transmit a sounding reference signal (SRS) on a subset of the frequency resources available for a hop of an SRS hopping sequence. A UE may be configured to use a subset of frequency resources or the UE may autonomously identify this subset. A base station may send a bit map to a UE to indicate the subset of resources to use for a hop. Each bit of the bit map may indicate that the UE is to transmit an SRS on a particular RB or on a particular groups of RBs. The same subset of resources may be designated for each hop or different subsets of resources may be designated for different hops. An indication of the subset of resources may be provided for each hop. The subset of resources may be cycled for different hops.

    POSTPONING OF APERIODIC SOUNDING REFERENCE SIGNALS

    公开(公告)号:US20230328698A1

    公开(公告)日:2023-10-12

    申请号:US18042578

    申请日:2020-10-28

    CPC classification number: H04W72/0446 H04W72/232 H04L5/0051

    Abstract: Aspects relate to wireless communication for slot postponing of aperiodic sound reference signals (A-SRS) by a user equipment in a wireless network. A network node, such as a gNodeB, may send at least a portion of a slot postponing configuration for transmission of aperiodic sounding reference signals (A-SRSs) to a user equipment (UE). In a particular aspect, the slot postponing configuration is established through RRC signaling and does not utilize downlink control information (DCI) or MAC-CE sent parameters for establishing the slot postponing configuration. The slot positioning configuration is used to control slot offset postponing, the number of slot offsets, the number of times transmission of A-SRS can be postponed in the UE, and priority rules based on the postponing configuration.

    CONFIGURING A RETUNING GAP AND AMPLITUDE AND PHASE CONTINUITY FOR SENSING AND WIRELESS COMMUNICATIONS

    公开(公告)号:US20230300805A1

    公开(公告)日:2023-09-21

    申请号:US18000278

    申请日:2020-07-13

    CPC classification number: H04W72/0446 H04W72/51

    Abstract: Methods, systems (100), and devices for wireless communications are described. In some systems (100), a base station (105) and a user equipment (UE) (115) may communicate over a shared radio frequency spectrum and may employ time-division multiplexing (TDM) techniques to multiplex sensing signals (315) with wireless communications in the shared radio frequency spectrum. In some examples, the base station (105) may configure the UE (115) with a first retuning gap during which the UE (115) may retune a radio frequency chain of the UE (115) when transitioning from a sensing signal (315) pulse to wireless communications and with a second retuning gap during which the UE may retune the radio frequency chain when transitioning from wireless communications to a sensing signal (315). In some other examples, the base station (105) may configure the UE (115) with a phase and amplitude continuity status of multiple adjacent sensing signal (315) pulses that may indicate whether the multiple adjacent sensing signal (315) pulses have

Patent Agency Ranking