Abstract:
Various aspects described herein relate to scheduling resources in wireless communications. In one aspect, communications can be established with a plurality of user equipment (UE). A set of the plurality of UEs as having an interference impact on one another that is less than a threshold can be determined. A first UE of the set of the plurality of UEs can be scheduled for downlink communications in a first transmission time interval (TTI), and a second UE of the set of the plurality of UEs can be scheduled for uplink communications in a second TTI that is adjacent in time to the first TTI. In another aspect, uplink communications for the first UE can be scheduled in a portion of the guard period TTI based at least in part on determining a timing advance of the first UE is less than a threshold.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus identifies first entity and transmits a very low duty cycle signal (LDCS) configuration of the first entity. The apparatus may comprise, e.g., an LPN that is not in a dormant state or a macrocell. The apparatus may receive LDCS information for the first entity. The apparatus may determine the LDCS configuration and transmit the LDCS configuration to the first entity.
Abstract:
In order to provide a generic access rule, the present disclosure proposes a new potential set of adaptivity rules for LBE based on LBT. The generic access rule of the present disclosure provides LTE-U and Wi-Fi coexistence and DL/UL coexistence in both LTE-U and Wi-Fi. The apparatus receives, from the first master device, a resource allocation for communicating with the second master device. The apparatus also determines a type of CCA procedure to perform before communicating with the second master device on an unlicensed channel. The apparatus further performs a CCA procedure to obtain a transmission opportunity based on the determining, the CCA procedure being one of an ICCA procedure or an ECCA procedure. In addition, the apparatus transmit data to the second master device in accordance with the resource allocation on the unlicensed channel when the transmission opportunity is obtained.
Abstract:
Certain aspects of the present disclosure provide techniques that may be used for low latency communications. For example, aspects allow a single group acknowledgement to be used to acknowledge a plurality of low latency transmissions. An exemplary method generally includes receiving, from a base station, a plurality of downlink channel transmissions, wherein each of the downlink channel transmissions is sent using a first transmission time interval (TTI) that is reduced relative to a legacy TTI and providing, in a single uplink channel transmission sent using a second TTI that is larger than the first TTI, a group acknowledgement indicating whether or not the downlink channel transmissions were successfully received by a UE.
Abstract:
According to the present disclosure, CSI and/or a plurality of ACKs related to a group of DL data transmissions may be buffered at the UE as a GACK until a DCI trigger is received from the eNB. Once the trigger is received, the UE may transmit the CSI and/or GACK to the eNB. In this way HARQ feedback and/or CSI may be reliably communicated while reducing payload. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus send, to a UE, data transmissions associated with a first plurality of downlink subframes. In an aspect, the apparatus increments a counter for each data transmission sent to the UE. In a further aspect, the apparatus transmits, to the UE, a first trigger for a first GACK when a counter is greater than or equal to a threshold.
Abstract:
Enhanced carrier aggregation may require development of mechanisms to enable carrier aggregation for an increased number of component carriers. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus for wireless communication are provided. The apparatus may be a user equipment. The apparatus may receive, with an uplink grant, a request for channel state information. The apparatus determines the number of bits comprising the request. The determined number of bits may be based on or associated with the number of serving cells configured for the apparatus. The apparatus reports the channel state information in response to the request based on information in the determined number of bits.
Abstract:
Certain aspects relate to methods and apparatus for discovering whether one or more enhanced capabilities are supported by devices (e.g., user equipment (UE), base station (BS), etc.) in a network. The enhanced capabilities may include, for example, the ability to support certain low latency procedures, enhanced component carrier (eCC) capability, and the like. The devices in the network may perform one or more handover-related procedures (e.g., cell selection/reselection, make-before-break handover, etc.) and/or other procedures (e.g., QoS negotiation, etc.) based, at least in part, on support for the one or more enhanced capabilities.
Abstract:
Various aspects are described relating to wireless communications of a second type of traffic data for small data transmissions. A first indication of control channel resources can be received from a network entity, wherein the control channel resources are defined by a radio access technology to include control data associated with a first type of traffic data. A control channel can be received from the network entity over the control channel resources, wherein the control channel includes a second type of traffic data, wherein the second type of traffic data includes a comparatively smaller data payload than the first type of traffic data. The second type of traffic data can be decoded from the control channel without decoding control data from the control channel.
Abstract:
Certain aspects of the present disclosure provide techniques that may be used to help enable low latency communications between a user equipment (UE) and a base station (BS) using quick uplink channels that enable a reduced transmission time interval (TTI). Additionally, certain aspects of the present disclosure provide techniques for managing communications in a wireless communication system, for example, by using enhanced downlink control channels.
Abstract:
Various aspects described herein relate to communicating in a wireless network. An uplink resource grant can be received from a network entity for communicating in the wireless network. A transmission time interval (TTI) for an uplink transmission within a subframe based on the uplink resource grant can be determined, wherein the TTI comprises one or more symbols which are a subset of a plurality of symbols in the subframe. Communications can be transmitted to the network entity over resources specified in the uplink resource grant during the TTI.