摘要:
Systems and methods for converting fuel are provided wherein the system comprises at least reactors configured to conduct oxidation-reduction reactions. The first reactor comprises a plurality of ceramic composite particles, wherein the ceramic composite particles comprises at least one metal oxide disposed on a support. The first reactor is configured to reduce the least one metal oxide with a fuel to produce a reduced metal or a reduced metal oxide. The second reactor is configured to oxidize the reduced metal or reduced metal oxide to produce a metal oxide intermediate. The system may also comprise a third reactor configured to oxidize the metal oxide intermediate to regenerate the metal oxide of the ceramic composite particles.
摘要:
Systems and methods for producing syngas are provided. A first hydrocarbon can be partially oxidized in the presence of an oxidant and one or more first catalysts at conditions sufficient to partially combust a portion of the first hydrocarbon to provide carbon dioxide, non-combusted first hydrocarbon, and heat. The non-combusted first hydrocarbon can be reformed in the presence of the heat generated in the partial oxidation step and the one or more first catalysts to provide a first syngas. Heat can be indirectly exchanged from the first syngas to a second hydrocarbon to reform at least a portion of the second hydrocarbon in the presence of steam and one or more second catalysts to provide a second syngas. A syngas, which can include the at least a portion of the first syngas, at least a portion of the second syngas, or a mixture thereof can be converted to provide one or more Fischer-Tropsch products, methanol, derivatives thereof, or combinations thereof.
摘要:
A process for the production of synthetic natural gas or town gas is described wherein the hot gaseous product of the partial combustion of a carbonaceous fuel, containing hydrogen and carbon monoxide, is passed into a carburetting zone at a temperature of from 700 to 1100*C and therein enriched with a volatile hydrocarbon carburant which on evaporation into the hot gaseous product of partial combustion is thermally cracked into methane and lighter unsaturated hydrocarbons. The carburetted gas product is then passed into a hydrogenation zone maintained at a temperature sufficient to further decompose any remaining hydrocarbon carburant and to hydrogenate the unsaturated hydrocarbons. In this process coke formation in the carburetting zone is substantially minimized by introducing the volatile hydrocarbon carburant into the carburetting zone in the form of a thin layer of liquid which is maintained at a temperature below that at which thermal cracking occurs during the time the carburant is not adsorbed by the hot gas stream.
摘要:
A flameless thermal oxidizer (FTO) includes at least one baffle constructed and arranged in a reaction chamber of the FTO to coact with a diptube of the FTO to radially expand a resulting “bubble” or reaction envelope from the diptube outward into a porous matrix of the FTO. A related method is also provided.
摘要:
The present invention describes a process and catalysts for the conversion of a light hydrocarbon and carbon dioxide input stream into high quality syngas with the subsequent conversion of the syngas into fuels or chemicals. In one aspect, the present invention provides an efficient, solid solution catalyst for the production of a carbon containing gas from carbon dioxide and light hydrocarbons. The catalyst comprises a single transition metal, and the transition metal is nickel.
摘要:
Steam is provided to the primary inlet (16) of an ejector (13), which also receives natural gas at a secondary inlet (28). A computer responds to a signal (37) indicating current in the load of a fuel cell as well as a signal (43) indicating temperature of a steam reformer (10) to move a linear actuator (23) to control a needle (21) that adjusts the size of the steam orifice. Reformate is fed to a separator scrubber (48) which cools the reformate to its dew point indicated by a sensor (71). From that, a controller (25) generates the fuel/carbon ratio for display (84) and to bias a signal on a line (24) regulating the amount of steam passing through an ejector (13) to the inlet (11) of the reformer. Alternatively, the reformate may be cooled to its dew point by a controllable heat exchanger (58a) in response to pressure (94) and temperature (71) signals.
摘要:
An improved multiple-tube catalytic reformer comprising a tubular body containing a radiator core having a plurality of longitudinal cells for low-pressure flow-through of combustion gases, the core being formed preferably either by winding of corrugated metal or as an extruded metal monolith. A plurality of reformer tubes, preferably non-cylindrical, containing hydrocarbon catalyst are arrayed in longitudinal openings within the radiator core and preferably are brazed thereto to maximize heat transfer from the radiator core to the reformer tubes. During manufacture, the metal radiator core is economically bored by laser cutting to form the openings to admit the reformer tubes for brazing. Preferably, the reformer tubes are numbered, sized, shaped, and arrayed to minimize the longest conduction path in the radiator core to the center of any reformer tube.
摘要:
A method of hydrogenation of unsaturated hydrocarbons for syngas production is presented. A hydrogenation feed reactor stream is introduced into a hydrogenation reactor, thereby producing a reformer feed stream. The reformer feed stream is introduced into a reformer, thereby producing a crude syngas stream. The crude syngas stream is introduced into a water gas shift converter, thereby producing a hydrogen-rich stream. The hydrogen-rich stream is separated in a separation means, thereby producing a carbon dioxide-rich stream and a hydrogen product stream. At least a portion of the hydrogen product stream is combined with a refinery fuel gas stream, and a natural gas stream, to form the hydrogenation reactor feed stream.
摘要:
A method for producing methane (69) from a carbonaceous (22) material includes conveying pulverized carbonaceous material (28) entrained in an inert carrier fluid, such as carbon dioxide (36), into a reactor (34). The reactor (34) includes a vortex region (72) for receiving hydrogen gas (38) and imparting a swirling motion to the hydrogen gas (38). The pulverized carbonaceous material (28) is exposed to the swirling stream of hydrogen gas (38) in a first reaction zone (114) within the reactor (34) to form an exit gas (40) that includes methane (69). Remaining unreacted carbonaceous material (28) is further exposed to the hydrogen gas (38) in a second, low velocity, reaction zone (120). The methane rich exit gas (40) is subsequently extracted from the reactor (34) for further processing.