摘要:
The device for removing pollution from the exhaust gases of an internal combustion engine includes an exhaust box (12) containing, in series, a catalytic purification unit (18) and a particle filter (20). The exhaust box (12) includes means (36; 60) providing access to the upstream face of the particle filter (20). Application to removing pollution from automobile vehicle diesel engines in particular.
摘要:
The invention relates to a method for purifying a gas stream containing impurities composed of organic compounds, said gas stream flowing out of a reactor (1) designed for solid phase condensation, preferably for aromatic polyesters and polyamides. According to said method, a gas containing at least oxygen is fed to the gas stream containing the impurities. The combined gas stream is then conveyed, at a high temperature, especially from 280° C. to 380° C., onto a catalyst (8) containing rhodium or a rhodium alloy on an inert porous support. It was found advantageous that the amount of oxygen used be hypo stoichiometric, in relation to the organic impurities, and/or that the ratio of oxygen to impurities be controlled by means of a lambda probe (A). Such a lambda probe (A) is used in a facility according to the invention.
摘要:
This invention is directed to a three-stage process for recovering and purifying a helium gas, and a system for using the three-stage process. The steps comprises a) introducing a gas from a cold spray forming chamber to a particulate removing apparatus to form a particulate-free helium gas, and recycling a first portion of the particulate-free helium gas back to the chamber; b) passing a second portion of the particulate-free helium gas to a first compressor prior to passing a helium gas purification membrane to form a purified helium gas and an exhaust gas, and passing the purified helium gas to mix with the first portion of particulate-free helium gas to the chamber; and c) passing a third portion of the particulate-free helium gas to a liquid separator apparatus to remove water and a receiver to dampen any pulsation to form a liquid-free helium gas, and recycling the liquid-free helium gas to said cold spray forming chamber.
摘要:
Disclosed is a method of manufacturing a catalytic converter for purifying exhaust gases from an internal combustion engine wherein the converter exhibits a monolithic ceramic substrate surrounded by a supporting mat. The method generally includes the steps of: Forming a catalytic converter utilizing a compressive closing method generally involves wrapping the substrate in a sufficient amount of supporting mat material and inserting the wrapped substrate into generally cylindrical metal container, compressively closing the container around the wrapped substrate sufficiently to provide a gas tight seal and to hold the imparted compressive stress. The present invention further discloses an improvement involving compressively closing the container around the wrapped substrate by resizing the container over substantially the entire portion of its length which is occupied by the wrapped substrate to a predetermined metal shell/container outside diameter OD. The predetermined outside diameter is characterized by the equation OD=D+2T1+2T2, wherein D is a diameter measure of the substrate, T1 is the supporting mat target thickness and T2 is a container wall thickness measure.
摘要:
A system for exhaust gas purification disposed in the exhaust pipe of an internal combustion engine, includes an adsorbent formed by loading, on a monolithic carrier, (1) a zeolite containing at least one kind of ion of an element having an electronegativity of 1.40 or more and (2) a catalyst material formed by loading at least one kind of noble metal selected from Pt, Pd and Rh on a heat-resistant inorganic oxide, and at least one loaded carrier formed by loading, on a monolithic carrier, a catalyst component having a purifiability for the harmful substances present in the exhaust gas emitted from the engine and/or an adsorbent component having an adsorptivity for the hydrocarbons also present in the exhaust gas, the loaded carrier being provided upstream of the adsorbent in the flow direction of the exhaust gas and having a total volume of 0.6 l or more. In this system for exhaust gas purification, the thermal deterioration of the adsorbent is reduced because there is used an adsorbent of higher HC desorption start temperature and because the thermal load applied to the adsorbent is decreased by the use of a particular means.
摘要:
Various methods for decreasing the amount of nitrogen oxides released to the atmosphere as a component of combustion gas mixtures are provided. The methods specifically provide for the removal of nitric oxide and nitrogen dioxide (NOx) from gas mixtures emitted from stationary combustion systems. In particular, methods for improving efficiency of nitrogen oxide reduction from combustion systems include injecting metal-containing compounds into the main combustion zone and/or the reburning zone of a combustion system. The metal containing compounds react with active combustion species, and these reactions change radical concentrations and significantly improve NOx conversion to molecular nitrogen. The metal-containing additives can be injected with the main fuel, in the main combustion zone, with secondary or reburning fuel addition, or at several locations in the main combustion zone and reburning zone. Optionally, nitrogenous reducing agents and/or overfire air can be injected downstream to further increase NOx reduction.
摘要:
The exhaust gas system has an exhaust gas catalytic converter, through which exhaust gases of an internal combustion engine can flow for catalytic conversion of the exhaust gases. The catalytic converter is disposed between two exhaust gas line segments, each forming one line connection with the catalytic converter and each contacting a stop face of the exhaust gas catalytic converter. A bracing element engages at least one of the exhaust gas line segments and braces the catalytic converter between the exhaust gas line segments. The system is particularly suitable for economical retrofitting of exhaust gas catalytic converters in motor cycles.
摘要:
A gas treatment system comprises a variable flow regulator assembly placed in operable and fluid communication with a shell of a gas treatment device. The variable flow regulator assembly comprises two or more conduit portions comprising a first portion and a second portion, wherein the second portion has a coefficient of thermal expansion greater than a first coefficient of thermal expansion of the first portion. The variable flow regulator assembly structurally changes shape to alter the flow maldistribution of an exhaust gas stream into the gas treatment device when light off is achieved.
摘要:
A strengthened thin-walled catalytic converter substrate includes thin perimeter walls and thin interior walls defining cells and a catalyst washcoat selectively disposed on the substrate. Washcoat thickness is increased in those cells having the most impact on final catalyst strength, typically the outer cells defined by the perimeter walls. A method for maximizing overall catalyst strength with minimal substrate thermal mass includes selectively applying washcoat based on desired substrate strength and converter assembly method.
摘要:
A system and method for abating a simultaneous flow of silane and arsine contained in an exhaust gas of DRAM processing chamber (12). The system includes a CVD abatement apparatus (20) and a resin-type adsorber (22). The CVD abatement apparatus comprises an enclosure (24) that defines a chamber (26) for receiving the exhaust gas. The enclosure contains a plurality of removable substrates (32) arranged as a series of baffles inside the enclosure. As the exhaust gas flows through the CVD abatement apparatus, the silicon within the silane is deposited as a film upon the substrates by chemical vapor deposition. The arsine continues to flow through the CVD apparatus to the adsorber where it is adsorbed by the resin contained therein. After the film has reached a particular thickness, the substrates can be removed from the enclosure, cleaned of the film and returned to the enclosure for further use.