Abstract:
The invention is a data multiplexing and separation method. It takes a plural number of timing data from memory that stores the plural number of timing data so as to detect bit positions on frame data signals on which bits respectively affiliated with a plural number of data are arranged. The plural number of timing data is used as the basis to arrange data to the frame data signal by successively arranging bits respectively affiliated with the plural number of data to the frame data signal so that the plural number of data is multiplexed to the frame data signals. And also it extracts a plural number of data from frame data signals by successively taking bits respectively affiliated with multiplexed the plural number of data from the frame data signals on the basis of the plural number of timing signals, and extracts a plural number of the multiplexed data from the frame data signals.
Abstract:
An ISDN network termination unit for connecting a user's bus line connected to a plurality of terminal equipments and a subscriber line extending from an exchanging office receives and transmits a D channel signal from one of the exchanging office and each terminal equipment to the other to thereby establish a data link between them on the D channel. The D channel signal is provided with an identifier code field. In order to establish a data link between the terminal equipments on the D channel without use of the subscriber line and the exchanging office, the ISDN network termination unit is provided with an identifier code holder for holding a predetermined identifier code and a deciding circuit for deciding whether or not the identifier code in the D channel signal from a specific one of the terminal equipment is equal to the predetermined identifier code. When both are equal to each other, the D channel signal is returned by a returning circuit to the terminal equipments through the user's line to thereby establish the data link between the specific terminal equipment and the other terminal equipments through the network termination unit. It may be made that a start flag and a stop flag are additionally detected so as to control the returning circuit.
Abstract:
In a facsimile system having a server device connected to a local-area network system, to which a plurality of client terminals are connected, and connected also to an ISDN and a pay-station telephone network, the server device performs communication with the pay-station telephone network and the plurality of client terminals, performs communication with the ISDN and the plurality of client terminals, and changes over communication between the ISDN and the pay-station telephone network in accordance with a command from each of the plurality of client terminals.
Abstract:
A plurality of digital telephones 2A, 2B are provided in direct multiple connection with a digital line 4 introduced from a private branch exchanging system. Each of the digital telephones 2A, 2B sends a burst signal containing its own telephone call data, and burst signals from the telephones 2A, 2B are combined into a single burst signal on the digital line 4 to transmit communication data of the telephones 2A, 2B in the form of the single burst signal to the private branch exchanger 1.
Abstract:
A method and apparatus for determining whether a sufficiently clear digital path exists from a first end user to a second end user when connecting a call over a switched telephone network. Once the determination is made, the type of connection that is possible (high speed digital or analog compatible rates) can be determined. The present invention determines the characteristics of a path between two subscribers on a telephone network by transmitting a digital probe along the path. In cases in which an answering subscriber or the intermediate path are incapable of supporting a digital call, communication in accordance with a standard analog modulation scheme can proceed without having to redial the call.
Abstract:
A facsimile terminal communicates facsimile data with an opposite facsimile terminal through an ISDN circuit. Even if the communication speed of the facsimile terminal is different from that of the opposite terminal, the facsimile terminal can surely exchange the facsimile data with the opposite terminal. The facsimile terminal includes a transmission and reception unit for transmitting and receiving data to and from the opposite terminal through the ISDN circuit, a receiving condition judging unit for judging or determining whether or not the transmission and reception unit receives data normally. The facsimile terminal also includes a speed switching instruction unit for providing a speed switching instruction when the transmission and reception unit does not normally or successfully receive data. In addition a speed switching control unit is provided for switching the communication speed of the transmission and reception unit from one speed to another according to the speed switching instruction.
Abstract:
An ISDN-LAN connection terminal executes the communications control procedure of a D-channel protocol, and is connected with a LAN. An ISDN connection terminal specifies at least one of the LAN terminals by a sub-address or user-user information in a set up signal. The sub-address or the user-user information include an internet address, an electric mail address or a host name as identification information of the LAN terminal. The ISDN-LAN connection terminal transmits the data to the specified LAN terminal.
Abstract:
A method of controlling a data transmission from a sending terminal to a receiving terminal through a plurality of data channels in an integrated services digital network. The method includes steps of sending a procedural message from the first terminal to the second terminal via the network, sending, in response to the procedural message, a connection message from the second terminal back to the first terminal via the network, the connection message including user-user data in which a request data is set to a second value, determining the number of the data channels used simultaneously for the data transmission in response to the connection message, received by the first terminal, in which the second value of the request data is equal to a predetermined value, and performing the data transmission from the first terminal to the second terminal by using the determined number of the data channels simultaneously.
Abstract:
A method of data transmission over an internal bus of a workstation, effecting communication of an interface coupler and a telephone line and devices adapted for various communication functions. The method employs the synchronization signal of a voice network to define 125-microsecond communication frames. Included in each 125-microsecond frame thus defined are a maximum of eight variable-length subframes corresponding to a maximum of eight devices. The first two bytes of each subframe are header bytes. Coded in the header bytes of each subframe are a device destination address, and length codes indicating the number of bytes of data included in the subframe and the number of active bits in the last byte.
Abstract:
A method and apparatus for transferring high data rate data between a pair of separated high data rate buses comprising storing a group of high data rate data from one of the buses, one of which is connected to a digital telephone set, reading the stored data at a low data rate, conditioning the low data rate data to remove high frequency components therefrom, applying the conditioned data to an unshielded cable for transmission to the separated other high data rate bus, receiving and storing the conditioned data from the unshielded cable and reading the stored conditioned data at a high data rate to said other bus.