Abstract:
The invention relates to the evaluation of a variable of an electric current in a power path by evaluating another electric current in a measuring path. To avoid excessively large electric currents in the measuring path, the current in said path is limited to a predetermined maximum limit value.
Abstract:
A current limiting circuit includes a current sensing module that is configured to sense an output current of a power transistor and to generate a corresponding sensing current which is proportional to the output current. A first current limiting module coupled to the current sensing module is configured to generate a first limiting current based on the sensing current when a variation of the output current of the power transistor exceeds a first current level. A second current limiting module coupled to the current sensing module is configured to generate a second limiting current based on the sensing current when a variation of the output current of the power transistor exceeds a second current level. A converting module coupled to the first and second current limiting modules and the power transistor controls a gate voltage of the power transistor based at least on the first and second limiting currents.
Abstract:
Circuits for protecting devices, such as gallium nitride (GaN) devices, and operating methods thereof are described. The circuits monitor a magnitude of the current in a device and reduce the magnitude of the current and/or shut down the device responsive to the magnitude of the current exceeding a threshold. These circuits safeguard devices from damaging operating conditions to prolong the operating life of the protected devices.
Abstract:
Provided is a voltage regulator in which an output current can be controlled stably and accurately to an overcurrent protection set value without the need of providing a phase compensation circuit including an element having a large area. The voltage regulator includes a constant voltage control circuit including: a first differential amplifier circuit for comparing a first reference voltage and a feedback voltage to each other; and an output transistor to be controlled by an output voltage of the first differential amplifier circuit, and an overcurrent protective circuit including: a resistor for measuring the output current; a second differential amplifier circuit for measuring a difference between voltages at both terminals of the resistor; a comparator for comparing an output voltage of the second differential amplifier circuit and a second reference voltage to each other; and a switch to be controlled by a detection signal of the comparator. When the output current equal to or larger than an overcurrent protection set value flows, the output voltage of the second differential amplifier circuit is input to the first differential amplifier circuit via the switch, to thereby switch control of the output transistor from control based on the constant voltage control circuit to control based on the overcurrent protective circuit.
Abstract:
Provided is a voltage regulator capable of preventing breakdown of a gate of an input transistor even when an overshoot occurs at an output terminal. The voltage regulator includes a diode, which is provided to an input transistor to which a divided voltage of an error amplifier circuit is input. The diode includes a cathode connected to a source of the input transistor and an anode connected to a gate thereof.
Abstract:
A current monitoring circuit is disclosed. The current monitoring circuit includes a main transistor arrangement for connection in series with a load and a set of one or more measurement branches in parallel with the main transistor arrangement. Each measurement branch comprises a series resistor and switch for controlling the connection of the branch into circuit. A gate controller is provided for controlling the switching of the main transistor arrangement and branch switches and a sense amplifier is included for measuring a current through the load based on the current flowing through the main transistor arrangement or a branch.
Abstract:
An architecture and method to maintain stability of a low drop-out (LDO)/load switch linear voltage regulator (LVR). The architecture method support optionally determining during a power-up phase and by using a load detection circuit, the estimated load parameters that represents at least one selected from a group consisting of: the load time constant and the load resistor at an output node of the LDO/load switch LVR, and adjusting, based on the estimated output load parameters, an adaptive RC network in the LDO/load switch LVR, wherein the adaptive RC network produces an adaptive zero in a feedback network transfer function of the LDO/load switch LVR, wherein the adaptive zero reduces an effect of a non-dominant pole in the open loop transfer function of the LDO/load switch LVR, and wherein a frequency of the adaptive zero is adjusted based on the estimated load parameters.
Abstract:
The present disclosure is directed to a current limiting circuit. The current limiting circuit may include a load, a first switch that controls current supplied to the load, and a first resistive network. The current limiting circuit may further include a voltage divider connected across the first resistive network and including a thermistor. The current limiting circuit may further include a first bipolar junction transistor that controls switching of the first switch. The output terminal of the voltage divider may be connected to a base junction of the first bipolar junction transistor.
Abstract:
To provide an overcurrent protection circuit which prevents an excessive current from flowing to an output terminal for a long time, and a semiconductor device and a voltage regulator each equipped with the overcurrent protection circuit. An overcurrent protection circuit is configured to include a first transistor which allows a current proportional to an output current flowing through an output transistor to flow, a constant current circuit which allows a reference current to flow, a comparison circuit which compares the current flowing through the first transistor and the reference current, and a control circuit which controls a gate of the output transistor by a signal outputted from the comparison circuit.
Abstract:
The present invention pertains to a linear power regulator device, comprising an internal pass device, a driver device having a driver output arranged to drive the internal pass device via the driver output, wherein the linear power regulator device comprises an external connection connectable or connected to an external pass device; and wherein the driver device is arranged to drive an external pass device via the driver output and the external connection. The invention also pertains to a corresponding electronic device.