摘要:
A surface plasmon polariton (SPP) pixel structure is provided. The SPP pixel structure includes a coupling structure that couples the probing light into the SPP mode by matching the in-plane wave vector by changing the refractive index of the coupling structure using thermo-optic effects to vary the coupling strength of the probing light into the SPP mode. An absorber layer is positioned on the coupling structure for absorbing incident infrared/thermal radiation being detected.
摘要:
An image acquisition apparatus acquires an image indicating an intensity distribution of infrared light. The image acquisition apparatus includes a conductive thin film, a dielectric layer placed on the thin film, a base to support the thin film and the dielectric layer in this order on a principal surface, a light source to emit light to an interface between the thin film and the base, and an image pickup device to receive light reflected on the interface between the thin film and the base.
摘要:
A method and system for calibrating temperature measurement devices, such as pyrometers, in thermal processing chambers are disclosed. According to the present invention, the system includes a calibrating light source that emits light energy onto a substrate contained in the thermal processing chamber. A light detector then detects the amount of light that is being transmitted through the substrate. The amount of detected light energy is then used to calibrate a temperature measurement device that is used in the system.
摘要:
A first object of the invention is a radiation detector comprising an energy absorber (203), for absorbing incident radiation (RAD) and thus undergoing a temperature increase; and optical readout means, for detecting said temperature increase; wherein said optical readout means comprises input coupling means (202) for coupling a light beam (2011) to said energy absorber (203) by exciting surface plasmons resonance, a surface plasmons resonance condition being dependent on the energy absorber (203) temperature, and wherein said energy absorber (203) is separated from said input coupling means (202) by a dielectric layer (2032).A second object of the invention is a micromechanical sensor comprising: a micromechanical oscillator and optical readout means (202) for detecting a displacement of said micromechanical oscillator; wherein said optical readout means comprise input coupling means (202) for coupling a light beam (2011) to a conductive surface (2031) by exciting surface plasmons resonance, a surface plasmons resonance condition being dependent on the displacement of said micromechanical oscillator.
摘要:
A thermal imaging device including: a substrate; and an array of thermally tunable pixel elements for generating a thermal image, each thermally tunable pixel element including: a plurality of thermally tunable filter islands, each of which has a thermally tunable optical filter, wherein each of the plurality of tunable filter islands within that pixel element is thermally isolated from the other tunable filter islands within that tunable pixel element; an absorption structure for absorbing incident optical thermal energy; and a mechanical structure supporting the plurality of tunable filter islands and the absorption structure on the substrate.
摘要:
Methods and apparatus for measuring and/or controlling the temperature on the surface or inside of micro chips are provided, including using thermally responsive polymers.
摘要:
A method and system for measuring remotely the surface temperature of a silicon wafer and layers, without the need to know the surface emissivity. The surface temperature is measured in-situ and in real-time during a high-temperature process, in a vacuum system, by using the linear polarization property of radiation. A blackbody source is heated to various, known temperatures, and provides radiation that impinges on the silicon surface and is reflected from it together with a self-emitted component. This combined reflected radiation is polarized and filtered to an appropriate wavelength, and observed with an imaging camera. Pairs of orthogonally polarized images of the surface are obtained for a set silicon surface temperature and for each blackbody temperature. The pairs of images are analyzed, pixel by pixel, to obtain a null polar level indicative of the surface temperature. The system is provided with means for rapid variation of the blackbody temperature, thus allowing measurement of rapidly changing silicon surface temperatures.
摘要:
Methods and apparatus for non-contact thermal measurement which are capable of providing sub micron surface thermal characterization of samples, such as active semiconductor devices. The method obtains thermal image information by reflecting a light from a surface of a device in synchronous with the modulation of the thermal excitation and then acquiring and processing an AC-coupled thermoreflective image. The method may be utilized for making measurements using different positioning techniques, such as point measurements, surface scanning, two-dimensional imaging, and combinations thereof. A superresolution method is also described for increasing the resultant image resolution, based on multiple images with fractional pixel offsets, without the need to increase the resolution of the image detectors being utilized. The thermoreflective method provides a spatial resolution better than current infrared cameras, operates within a wide temperature range, and is capable of a thermal resolution on the order of 10 mK°.
摘要:
Methods and apparatus for remotely measuring the temperature of a specular surface are disclosed. The method includes taking two different measurements of P-polarized radiation emitted from the surface at or near the Brewster angle associated with the surface. The first measurement (SA) collects and detects a first amount of radiation emitted directly from a surface portion using a collection optical system. The second measurement (SB) includes the first amount of radiation and adds a quantity of radiation collected at or near the Brewster angle and reflected from the surface. This is accomplished with a retro optical system with a round-trip transmission t2 that retro-reflects a quantity of radiation received from the surface portion back to the same surface portion where it is reflected and combined with the first amount of radiation collected by the collection optical system. Measurements SA and SB and the transmission, t2, are used to determine the surface emissivity (ξ). A calibration curve is then used that relates the ratio of the first measurement SA to the surface emissivity ξ, (SA/ξ), to surface temperature. The calibration curve is then used to determine the surface temperature from the SA/ξ value.
摘要:
Optical methods and devices for the thermal detection and imaging of infrared, sub-millimeter, millimeter and high energy radiation, wherein the thermal mass of the detector is minimized by the use of microscopic photoluminescent temperature probes having a weight mass which can be of the order of 10−11 grams or smaller. Used for detection of high energy radiation, including quantum calorimetry, said temperature probes allow non-contact measurements free of electrical sources of noise like Johnson noise or Joule heating.