Abstract:
In the conventional fumigation of the rooms required to be sterilized, formaldehyde is general used, but formaldehyde has such problems as carcinogenicity and residual tendency. It is also proposed to combine fumigation and air conditioning for automation, but air conditioning and fumigation cannot be performed concurrently. The present invention proposes an air conditioning system for the rooms required to be sterilized, comprising an air conditioning path consisting of an conditioned air supply path extending from the discharge side of an air conditioner to the air supply openings of the rooms required to be sterilized and an indoor air suction path extending from the air suction openings of the rooms required to be sterilized to the suction side of the air conditioner; a bypath for bypassing the air conditioner; an ozone supply path extending from an ozone generation unit to a switching mechanism and further branching into the ozone supply paths connected with said conditioned air supply path and said bypath; an ozone decomposition path with an ozone decomposition unit, in parallel with the bypath; an air discharge path with an air discharge fan, connected with said indoor air suction path or with the rooms required to be sterilized; and a switching mechanism for switching between said air conditioning path, said bypath, said ozone decomposition path and said air discharge path.
Abstract:
The present invention provides an air filtration cartridge 1 suitable for use in the treatment of air in a forced airflow air supply system. The cartridge 1 comprises an inner casing 2 having an upstream stage 3 defining a chamber 4 having an inlet 5 for receiving a forced airflow 6. The chamber 4 has an outlet 7 which leads into a downstream stage 8 comprising a filter holder and mounting a high airflow electrostatic filter. Inside the chamber 4 is a low power coronal discharge ozone generator device 10.
Abstract:
A surface discharge type air cleaning device comprises an insulating dielectric body formed in the shape of a sheet, a discharge electrode formed at the upper surface of the insulating dielectric body, and a ground electrode formed at the lower surface of the insulating dielectric body. The discharge electrode is formed of a closed pattern having a predetermined area on the upper surface of the insulating dielectric body. The discharge electrode has a non-pattern part disposed in a pattern part where the pattern is formed. The electrode is not formed at the non-pattern part. The ground electrode is formed at a predetermined position corresponding to the non-pattern part. The area of the non-pattern part is reduced to decrease generation of ozone, and the area of the pattern part is enlarged to increase generation of negative ions and hydroxyl radicals. Consequently, the number of negative ions and hydroxyl radicals is increased while the amount of ozone is decreased, and therefore, air cleaning efficiency is improved.
Abstract:
An air cleaner for use in a central heating and air conditioning system for a home or small building has a hollow shell that is configured to fit into the duct system associated with the heating and air conditioning system such that all or substantially all the air heated or cooled by the unit passes through the shell. Located in the shell is an ozone generator and an activated carbon filter. The activated carbon filter is located downstream of the ozone generator and substantially all of the heated or cooled air passes through the activated carbon filter. The activated carbon filter is sized to absorb a substantial portion of the ozone generated by the ozone generator.
Abstract:
An air conditioner includes an ion generator that provides ions and safe amounts of ozone. The ion generator includes a high voltage generator that provides a voltage potential difference between first and second electrode arrays. At least one of the first and second arrays is removable from the housing for cleaning.
Abstract:
An air conditioner includes an ion generator that provides ions and safe amounts of ozone. The ion generator includes a high voltage generator that provides a voltage potential difference between first and second electrode arrays. At least one of the first and second arrays is removable from the housing for cleaning.
Abstract:
An electro-kinetic air conditioner for removing particulates from the air creates an airflow using no moving parts. The airflow is subjected to UV radiation from a germicidal lamp within the device. The conditioner includes an ion generator that has an electrode assembly including a first array of emitter electrodes, a second array of collector electrodes, and a high voltage generator. The device can also include a third or leading or focus electrode located upstream of the first array of emitter electrodes, and/or a trailing electrode located downstream of the second array of collector electrodes, and/or an interstitial electrode located between collector electrodes, and/or an enhanced emitter electrode with an enhanced length in order to increase emissivity.
Abstract:
Embodiments of the present invention are related to electro-kinetic air transporter-conditioner systems and methods. An electro-kinetic air conditioner device includes an inner hollow cylindrical mesh electrode having a first radius and an outer hollow cylindrical mesh electrode having a second radius that is larger than the first radius. The second hollow cylindrical mesh electrode surrounds the first hollow cylindrical mesh electrode. At least one emitter electrode is located within and generally parallel to the first hollow cylindrical electrode. A voltage source provides a high voltage potential difference between each emitter electrode and the inner hollow cylindrical mesh electrode. The outer hollow mesh electrode is preferably grounded, as well as insulated.
Abstract:
An electro-kinetic air conditioner for removing particulates from the air creates an airflow using no moving parts. The airflow is subjected to UV radiation from a germicidal lamp within the device. The conditioner includes an ion generator that has an electrode assembly including a first array of emitter electrodes, a second array of collector electrodes, and a high voltage generator. The device can also include a third or leading or focus electrode located upstream of the first array of emitter electrodes, and/or a trailing electrode located downstream of the second array of collector electrodes, and/or an interstitial electrode located between collector electrodes, and/or an enhanced emitter electrode with an enhanced length in order to increase emissivity.
Abstract:
An apparatus for purifying air comprising two electrodes having a dielectric material such as glass extending therebetween. The dielectric material is air permeable, for example, in the form of a bed of discrete particles such as glass beads. The electrodes are also air permeable, allowing the air to flow through the electrodes and dielectric. Ozone is generated by discharge at points of contact of the dielectric particles. Airflow through the device is improved, allowing greater cooling, and higher volumes of airflow but at lower concentrations of ozone production than with prior art devices, thus reducing toxicity.