Abstract:
The present invention relates to a stabilized monomer dispersion containing inorganic oxide nanoparticles with high refractive index in which the refractive index of the inorganic oxide nanoparticles is greater than 1.65 and the average particle size of the high refractive inorganic oxide nanoparticles ranges from 1 to 100 nm and its content is in a range of from 1.0% by weight to 10.0% by weight based on the total weight of the monomer dispersion. The present invention also relates to a process for preparing the stabilized monomer dispersion containing high refractive inorganic oxide nanoparticles.
Abstract:
Suspensions of cerium oxide particles, well suited for polishing applications, the particles (secondary particles) of which have an average size of at most 200 nm, these secondary particles are formed from primary particles whose average size measured by TEM is at most 150 nm with a standard deviation of at most 30% of the value of this average size, and for which the ratio of the average size measured by TEM to the average size measured by BET is at least 1.5. Such suspensions are prepared from solutions of a cerium III salt, comprising a colloidal dispersion of cerium IV, which are contacted, in the presence of nitrate ions and under an inert atmosphere, with a base, and the medium obtained is subjected to a thermal treatment under an inert atmosphere and then acidified and washed.
Abstract:
The invention relates to a ball, comprising a biodegradable polymer and one or more additives, such as an electrostatic charge eliminating additive, a density increasing additive, a strength/hardness modifier and/or the like added to the polymer mass during the compounding step. The ball is manufactured by a process generally applicable to the manufacture of polymers, such as injection molding, into a substantially spherical shape and grinding and/or polishing it to its final shape by means of double-sided lapping, barrel tumbling and/or the like. The biodegradable polymer used in the ball is polybutylene succinate (PBS).
Abstract:
This disclosure relates to novel blended compositions for biological contaminant removal containing a particulate oxide composition and silver zinc zeolite. The particulate oxide composition is a mixed oxide of at least cerium and trivalent dopant. These blended compositions can be used as antimicrobial/antibacterial/antiviral agents. As such, this disclosure also relates to the use of these blended compositions for biological contaminant removal. The blended compositions have uses for removing bacteria, viruses, protozoa (e.g., amoebae), fungi (e.g., mold), algae, yeast, and the like. In particular, these blended compositions can be used in methods for treating fluids, including liquids or air, and solid surfaces through contact.
Abstract:
A polishing liquid containing abrasive grains, a hydroxy acid, a polyol, a cationic compound, and a liquid medium, in which a zeta potential of the abrasive grains is positive and a weight average molecular weight of the cationic compound is less than 1000.
Abstract:
In one aspect, the present invention is an organic-inorganic hybrid membrane of a cerium oxide and an organic fluorine compound, the organic-inorganic hybrid membrane satisfying the following (a), (b), and (c): (a) the visible-light transmittance is 70% or higher; (b) the UV transmittance at a wavelength of 380 nm is 60% or lower; and (c) the water contact angle of the surface of the organic-inorganic hybrid membrane is 80° or higher. In another aspect, the present invention is an organic-inorganic hybrid membrane of a cerium oxide and an organic fluorine compound, the organic-inorganic hybrid membrane satisfying the following (a), (b), and (c′): (a) the visible-light transmittance is 70% or higher; (b) the UV transmittance at a wavelength of 380 nm is 60% or lower; and (c′) the water contact angle of the surface of the organic-inorganic hybrid membrane is 90° or higher. The organic fluorine compound may include a fluorine-based resin. Also disclosed are a laminate and an article that include the organic-inorganic hybrid membrane.
Abstract:
A slurry composition for polishing tungsten is provided. The slurry composition for polishing tungsten may include a water-soluble polymer, abrasive particles and an etching adjuster.
Abstract:
The invention provides a chemical-mechanical polishing composition comprising, consisting essentially of, or consisting of (a) about 0.01 wt. % to about 1 wt. % of wet-process ceria, (b) about 10 ppm to about 200 ppm of a cationic polymer comprising quaternary amino groups, (c) about 10 ppm to about 2000 ppm of a non-fluorinated nonionic surfactant, (d) an amino acid, and (e) water, wherein the polishing composition has a pH of about 3 to about 8. The invention further provides a method of polishing a substrate with the polishing composition.
Abstract:
Provided is a film for a transparent screen which can clearly display merchandise information, advertisement, or the like on a transparent partition or the like by projection without compromising the transmission visibility. A film for a transparent screen according to the present invention includes: a resin layer; and inorganic particles at least a portion of which is contained in an aggregated state in the resin layer, wherein primary particles of the inorganic particles have a median diameter of 0.1 to 50 nm and a maximum particle size of 10 to 500 nm, and the content of the inorganic particles is 0.015 to 1.2% by mass with respect to the resin.
Abstract:
A coating material for an aluminum substrate for inkjet computer-to-plate and preparation method and use of same. The composition of the coating material is: high polymer 5-40 wt %; nano-sized and/or micro-sized oxide particles 5-30 wt %; organic solvent constituting the remainder. The high polymer is at least one selected from the group consisting of MMA-BMA-MA terpolymer resin, phenolic resin, epoxy resin, polyurethane, polyester, urea-formaldehyde resin, polyvinyl formal, polyvinyl butyral and gum arabic. The preparation method for obtaining the coating material is to mix the ingredients together and stir at room temperature. A spin coating method or a roll coating method is used to coat the coating material onto a clean aluminum substrate having not undergone electrolytic graining and anodic oxidation treatment, and then the substrate is baked, resulting in the required roughness.