摘要:
In a back pressure control apparatus for controlling back pressure in an injection molding machine comprising an injection device which comprises a heating cylinder, a screw, and an injection actuator and which is provided with a back pressure detector for producing a pressure detected signal and with a screw position detector for producing a screw position detected signal, the back pressure control apparatus comprises a level setting section for setting a back pressure control level with respect to back pressure. A sharpness selecting section selects, as a selected sharpness, one of a plurality of sharpnesses in transition up to a maximum back pressure command value. On the basis of the back pressure control level, a determining section determines a back pressure pattern having a variable back pressure command value which continuously changes with respect to a retreat position of the screw. The back pressure pattern has a mountain-shaped portion defined by the selected sharpness. Responsive to the pressure detected signal and the screw position detected signal, a controller controls the back pressure in accordance with the back pressure pattern by means of the injection actuator.
摘要:
A control device for an injection molding machine is equipped with a pressure acquisition unit that acquires a pressure of a resin inside a cylinder, a reverse rotation control unit that causes a screw to be rotated in reverse based on a predetermined reverse rotation condition so as to reduce the resin pressure after having moved the screw rearward to a metering position, a compensation amount calculation unit that calculates a compensation amount to be made with respect to the reverse rotation condition, based on the resin pressure inside the cylinder acquired by the pressure acquisition unit when the reverse rotation of the screw is stopped, and a predetermined compensation function, and a compensation processing unit configured to compensate the reverse rotation condition based on the compensation amount calculated by the compensation amount calculation unit.
摘要:
A method of influencing the melt temperature in the plasticizing cylinder of a plasticizing unit (1) for an injection molding machine having a plasticizing screw (4) arranged rotatably and displaceably in a cylinder bore of an axially extending plasticizing cylinder, wherein metering of plastic granular material fed to the plasticizing unit (1) is effected in dependence on a desired melt temperature in the plasticizing unit (1).
摘要:
The exact method with small time-lag of detecting screw back pressure for controlling the screw back pressure in the plasticizing process of an electric-motor driven injection molding machine without using a pressure detector has been asked for because the pressure detector is very expensive, necessitates troublesome works for mounting, an electric protection against noise and the works for zero-point and span adjustings and causes a complicate mechanical structure.The present invention uses a high-gain observer which contains the discrete-time arithmetic expressions derived from a mathematical model of a plasticizing mechanism in an electric-motor driven injection molding machine consisting of state equations and outputs an estimate of screw back pressure, which is one of the state variables of the above state equations, by using a screw position signal, a servomotor current demand signal or actual motor current signal and a screw revolution speed signal as inputs. The high-gain observer obtains the exact screw back pressure estimate with very small time-lag without using a pressure detector. Thus the estimate of screw back pressure fed by the high-gain observer can be adopted as a feedback signal of actual screw back pressure for controlling the screw back pressure in the plasticizing process.
摘要:
{Problem} The exact method with small time-lag of detecting screw back pressure for controlling the screw back pressure in the plasticizing process of an electric-motor driven injection molding machine without using a pressure detector has been asked for because the pressure detector is very expensive, necessitates troublesome works for mounting, an electric protection against noise and the works for zero-point and span adjustings and causes a complicate mechanical structure.{Solution} The present invention uses a high-gain observer which contains the discrete-time arithmetic expressions derived from a mathematical model of a plasticizing mechanism in an electric-motor driven injection molding machine consisting of a state equation and an output equation and outputs an estimate of screw back pressure, which is one of the state variables of the above state equation, by using a screw backward velocity signal, a motor current demand signal applied to a servomotor for injection or actual motor current signal and a screw revolution speed signal as inputs. The high-gain observer obtains the exact screw back pressure estimate with very small time-lag without using a pressure detector. Thus the estimate of screw back pressure fed by the high-gain observer can be adopted as a feedback signal of actual screw back pressure for controlling the screw back pressure in the plasticizing process.
摘要:
Intended is to provide a molding machine using a built-in type motor as an injecting electric motor. In this molding machine, a mounting structure for such a transmission mechanism from a rotational motion to a linear motion, as changes the rotation of the built-in motor into the linear motion thereby to transmit the linear motion to an injecting member, is simplified to improve the assembling workability. For this improvement, a sleeve is fixed in the rotor of the built-in type motor. In the hollow portion of the sleeve, a screw shaft or the rotating portion of a ball screw mechanism and the sleeve are connected and fixed by a connecting member. A nut member or the straight portion of the ball screw mechanism is fixed on a member for performing straight motions together with the injecting member.
摘要:
The present invention relates to a throttle for an injection molding machine for injection molding rubber or elastomeric material and comprises a throttle block, an inlet channel and an outlet channel provided therein as well as a throttle means. The inlet channel can be provided at an angle relative to the outlet channel. The throttle means comprises a throttle piston, which serves both to reduce the material flow and inject the rubber or elastomeric materials into the injection mold. A system and method for tempering rubber or elastomeric material in injection molding can be realised with the throttle of the invention, wherein in particular shorter cycle times can be achieved.
摘要:
Screw rotation speeds and screw rotating torques are measured at predetermined time intervals during metering and substituted into a previously-assumed function to determine a maximum screw rotating torque at each screw rotation speed. An allowable upper limit of screw rotating torque is set for each screw rotation speed on the basis of the determined maximum screw rotating torque. If a screw rotating torque exceeding the allowable upper limit is detected during metering after the allowable upper limit is set, the screw rotation is stopped or changed.
摘要:
A controller of an injection molding machine and a controller of a molded-product removing robot are connected to each other via communication means. When a molding condition save command is entered from the controller of the injection molding machine, a folder with a management number is created on a memory card, and molding conditions stored in the controller of the injection molding machine are saved in the folder. A teaching program and/or setting data stored in the robot controller is read via the communication means and saved in the same folder. When a molding condition read command is entered, data is read from a specified folder, molding conditions are set in the controller of the injection molding machine, and a teaching program etc. are set in the robot controller via the communication means.
摘要:
Disclosed is an injection unit (1) for an injection molding machine, comprising a screw (4) that is driven by means of a spindle drive (18). The spindle drive (18) is driven via an electric motor (6). Additionally, a force that acts in an axial direction is transmitted to the screw of the injection unit (1) via a hydraulic cylinder (38). According to the invention, a pump (48, 68) is driven via the electric motor (6). A pressure chamber (44) of the cylinder (38) can be supplied with more pressurizing means via said pump (48, 68) than is needed during an axial displacement of the plunger (36).