摘要:
Methods of producing a deformed porous hollow fiber membrane by thermally induced phase separation, particularly by discharging a fusion kneaded product containing a thermoplastic resin and an organic liquid through an orifice of a hollow fiber-forming deformed nozzle; cooling and solidifying the fusion kneaded product discharged through the deformed nozzle to form the product into a hollow fiber-like material having a deformed cross section at a cross section vertical to a discharging direction; and extracting away the organic liquid from the hollow fiber-like material to obtain the deformed porous hollow fiber membrane, wherein an inorganic fine powder is kneaded in the fusion kneaded product.
摘要:
A spinning device is disclosed. The spinning device includes a tube body, a sleeve component, a jacket tube and a lid. The tube body has a first through orifice in a vertical direction, the sleeve component has a second through orifice for the tube body to be mounted therein to form a fluid passage in between; the jacket tube has a third through orifice for the sleeve component and the tube body to be mounted therein. A first opening and second opening are formed on the wall of the jacket tube, allowing the second opening to be coupled with the fluid passage. The lid is coupled to one end of the jacket tube, and has a forth through orifice, allowing the tube body to rotate with respect to the sleeve tube, jacket tube and the lid, thereby making a the hollow fiber having a spiral passage.
摘要:
In one embodiment is provided a polymer blend of poly(vinyl acetate) (PVAc) and poly(acrylic acid) (PAA), wherein the poly(vinylacetate) is present in an amount ranging between about 20 wt % and about 80 wt %, and poly(acrylic acid) is present in an amount ranging between about 80 wt % and about 20 wt %, based on the total weight of the blend. In another embodiment is provided a fiber produced from this polymer blend, and which has cells therein. In another embodiment is provided a flavorant release material comprising the porous fiber disclosed herein, and one or more flavorants disposed in a longitudinally extending core within the fiber. In another embodiment is provided a polymer fiber membrane containing a hollow, porous fiber formed from the polymer blend disclosed herein. In another embodiment is provided a filter containing the fiber described herein. In another embodiment is provided a process for producing the fibers disclosed herein by addition of the polymers to an extruder or blender, and extruding or melt spinning the mixture into a fiber containing cells therein.
摘要:
Antisolvent crystallization systems and methods are provided that employ porous hollow fiber membranes. The porous hollow fiber membrane includes a plurality of porous hollow fibers positioned within a shell, each porous hollow fiber defining a lumen side and shell side. A crystallizing solution is introduced to one side of the hollow fibers and an antisolvent is introduced to the other side of the fibers, in either cocurrent or countercurrent flow. One of the antisolvent and the crystallizing solution permeates in part through the porous hollow fiber membrane to the other side and crystals are formed thereby. Permeation of the antisolvent or the crystallizing solution establishes advantageous radial mixing that facilitates crystal formation of a desired size distribution. Downstream mixing, e.g., a completely stirred tank or a static mixer, may be employed to further improve crystallization operations.
摘要:
Porous hollow polymer fiber membranes having convoluted inside and/or outside surfaces, as well as filter devices comprising a plurality of the hollow fiber membranes, the devices preferably being arranged to direct fluid flow from the inside surface of the membranes to the outside surface, methods of making the membranes, and methods of using the filter devices, are disclosed.
摘要:
An aromatic polysulfone type resin hollow fiber membrane having a thickness of 100 to 600 .mu.m and a five-layer structure of an outer surface layer, an outer void layer, an intermediate layer, an inner void layer and an inner surface layer and wherein the inner and outer void layers are present in a thickness ratio of the inner void layer to the outer void layer of 1.5 to 0.6, the intermediate layer has a thickness of 5 to 70 .mu.m, and each of the outer and inner surface layers has an extremely small thickness. The hollow fiber membrane of the kind is excellent in heat resistance, acid resistance, alkali resistance, chemicals resistance and has an improved mechanical strength as well as a high water permeability. The hollow fiber membrane with such excellent properties can be obtained by a process which comprises extruding into an air space a spinning solution of an aromatic polysulfone type resin in an organic polar solvent for said resin, said solution containing a glycol and having a resin concentration of from 15 to 35% by weight, from an annular spinning nozzle to obtain an extrudate in the form of a hollow fiber, allowing the thus obtained extrudate to run in the air space while simultaneously injecting an internal coagulating liquid into the annular spinning nozzle at an inside bore thereof, and subsequently introducing said extrudate into a coagulating liquid bath.
摘要:
The present invention provides a carbon membrane for fluid separation with which a high-pressure fluid can be separated and purified and which has excellent pressure resistance and is less apt to be damaged. The present invention relates to a carbon membrane for fluid separation, including: a core layer which has a co-continuous porous structure; and a skin layer which has substantially no co-continuous porous structure and is formed around the core layer.
摘要:
A porous hollow fiber membrane that is suitable for treatment of liquid containing an inorganic substance and/or an organic substance, is obtained at a low cost performance, and has high water permeability performance, fretting resistance, and drying resistance. A deformed porous hollow fiber membrane according to the present invention is composed of a thermoplastic resin and includes a continuous asperity provided on the periphery in the longitudinal direction of the membrane, in which the periphery of the hollow fiber membrane in the circumferential direction includes continuous projected and depressed parts.
摘要:
Disclosed is a charged hollow fiber membrane having hexagonal voids for use in high throughput applications. The membrane includes: (i) an inner surface; (ii) an outer surface; (iii) a porous bulk disposed therebetween, wherein the porous bulk comprises at least a first region including: a) a first set of pores having a controlled pore size and having outer rims; b) a second set of pores connecting the outer rims of the first set of pores, wherein the pore size of the first set of pores is greater than the pore size of the second set of pores; and c) a polymer matrix supporting the first set of pores; and (iv) at least one charged zone disposed on the inner surface, on the outer surface, and/or in the porous bulk hollow fiber membrane. Also disclosed is a method for preparing such hollow fiber membranes, which involves coating a filament with a coating composition that includes a membrane-forming polymer, a charged polymer, and dissolvable nanoparticles, followed by phase invention, dissolving of the nanoparticles, and removal of the filament.
摘要:
A filtration module is disclosed, comprising at least one hollow capillary filtration membrane, in particular having a retentate side inside the hollow capillary and a permeate side outside the capillary, characterized in that the retentate side of the capillary filtration membrane has at least one dent with an aperture angle Φ smaller than 180°.A method to apply a filtration module according to the invention is disclosed characterized in that release of a cake layer formed at the retention side of the membrane is enforced, as well as further disrupture and disintegration of the cake layer, by applying a backwash cycle with a reverse flow at a backwash pressure lower than the maximum trans membrane pressure during a forward filtration step of a process liquid.