摘要:
A device for continuously measuring osmotic pressure of blood flowing through an extracorporeal blood circuit including: a blood passage further comprising a withdrawal blood passage connectable to a blood vessel in a patient and an infusion blood passage connectable to a blood vessel in a patient; a filter further comprising a filtrate chamber, a blood chamber and a permeable membrane separating the filtrate chamber and blood chamber, wherein the blood chamber is in fluid communication with the blood passage; a pressure sensor measuring a pressure difference between the filtrate chambers and the blood chamber, and a controller receiving a pressure signal from the pressure sensor, determining an osmotic pressure across the permeable membrane of the filter, and adjusting a rate of removal of fluid from blood in the filter if the determined osmotic pressure level varies from a predetermined osmotic pressure setting.
摘要:
A first flow path is defined within a first panel that forms a part of an extracorporeal fluid circuit. A second flow path is defined within a second panel that also forms a part of the extracorporeal fluid circuit. The first and second panels are oriented in a fluid processing cartridge for mounting as an integrated unit on a fluid processing machine and for removal as an integrated unit from the fluid processing machine.
摘要:
A method and system for the extracorporeal treatment of blood to remove fluid from the fluid overloaded patient is disclosed that non-invasively measures osmotic pressure across a filter membrane of a blood filter. The filter is permeable to water and electrolytes, but not to blood protein. The osmotic pressure indicates the protein concentration in the blood. Osmotic pressure is used to detect when hypotension is about to occur in a patient, as a result of excessive blood volume reduction during treatment of the blood. Using the osmotic pressure measurement as a feedback signal, the rate of fluid extraction is automatically controlled to achieve the desired clinical outcome and avoid precipitating a hypotensive crisis in the patient.
摘要:
A first flow path is defined within a first panel that forms a part of an extracorporeal fluid circuit. A second flow path is defined within a second panel that also forms a part of the extracorporeal fluid circuit. The first and second panels are oriented in a fluid processing cartridge for mounting as an integrated unit on a fluid processing machine and for removal as an integrated unit from the fluid processing machine.
摘要:
A first flow path is defined within a first panel that forms a part of an extracorporeal fluid circuit. A second flow path is defined within a second panel that also forms a part of the extracorporeal fluid circuit. The first and second panels are oriented in a fluid processing cartridge for mounting as an integrated unit on a fluid processing machine and for removal as an integrated unit from the fluid processing machine.
摘要:
A first flow path is defined within a first panel that forms a part of an extracorporeal fluid circuit. A second flow path is defined within a second panel that also forms a part of the extracorporeal fluid circuit. The first and second panels are oriented in a fluid processing cartridge for mounting as an integrated unit on a fluid processing machine and for removal as an integrated unit from the fluid processing machine.
摘要:
A first flow path is defined within a first panel that forms a part of an extracorporeal fluid circuit. A second flow path is defined within a second panel that also forms a part of the extracorporeal fluid circuit. The first and second panels are oriented in a fluid processing cartridge for mounting as an integrated unit on a fluid processing machine and for removal as an integrated unit from the fluid processing machine.
摘要:
A first flow path is defined within a first panel that forms a part of an extracorporeal fluid circuit. A second flow path is defined within a second panel that also forms a part of the extracorporeal fluid circuit. The first and second panels are oriented in a fluid processing cartridge for mounting as an integrated unit on a fluid processing machine and for removal as an integrated unit from the fluid processing machine.
摘要:
A method and system for the extracorporeal treatment of blood to remove fluid from the fluid overloaded patient is disclosed that non-invasively measures osmotic pressure across a filter membrane of a blood filter. The filter is permeable to water and electrolytes, but not to blood protein. The osmotic pressure indicates the protein concentration in the blood. Osmotic pressure is used to detect when hypotension is about to occur in a patient, as a result of excessive blood volume reduction during treatment of the blood. Using the osmotic pressure measurement as a feedback signal, the rate of fluid extraction is automatically controlled to achieve the desired clinical outcome and avoid precipitating a hypotensive crisis in the patient.
摘要:
The present invention provides an improved peritoneal dialysis method and system. The system comprises a single catheter that is placed in the patient, a source of dialysate, and a diatyzer in fluid communication with the source of dialysate and the catheter. The system includes a single fluid pump in fluid communication with the source of dialysate and the catheter. The single pump is capable of pumping the dialysate into and out of the patient and back to the source of dialysate. The method includes the steps of placing a single catheter in a peritoneum of the patient, providing a source of dialysate, coupling the source of dialysate in fluid communication with the catheter on a single fluid circuit, pumping the dialysate from the source of dialysate into and out of the peritoneum using a single pump in the single fluid circuit.