Abstract:
The present invention provides a smart device which can receive, by an image sensor of a camera, a visible light signal generated by a light-emitting source such as a lighting apparatus or a display, and which can transmit the visible light signal to another terminal and light-emitting source by an LED flash of the camera, thereby enabling transmission and reception of visible light communication by the camera, which is equipped as standard in the smart device, as well as enabling transmission and relay of data by connecting to RF communication such as WiFi, Bluetooth and UWB. Moreover, the present invention provides a system and a method for providing location-based services which measure an approximate current location of a user by an RF communication access point and measure the current location of the user in detail by receiving a visible light signal, which includes location information, from the light-emitting source, and thus can perform a high-precision indoor location recognition function linking visible light communication and RF communication and can provide guide image information, which comprises various additional information, on the basis of the location information of the user.
Abstract:
A MIMO antenna for improving isolation is disclosed. The disclosed antenna includes a dielectric feature; a ground plane included in a first layer of the dielectric feature; a first radiator, which is electromagnetically joined with a first feed point, configured to radiate a first RF signal, and joined with the ground plane; a second radiator, which is electromagnetically joined with a second feed point, configured to radiate a second RF signal, and joined with the ground plane; and a connector line, which is joined with a particular point of the first radiator and with a particular point of the second radiator to connect the first radiator with the second radiator. The disclosed antenna can improve isolation properties between multiple antennas and can ensure adequate isolation properties even when the distances between multiple antennas are set to be relatively small.
Abstract:
Provided is a bus including a door adjacent to a driver's seat. The bus includes a first front surface part and a second front surface part. The first front surface part is connected to a front end of the bus undersurface part, and is designed into a streamlined shape so as to reduce a pressure resistance by a still air pressure acting on a front surface of the bus during a running. The second front surface part assists a reduction of the pressure resistance and extends from an upper part of the first front surface part while being bent toward an inside of the bus so as to provide a boarding space for passengers through the door.
Abstract:
An RFID system using an M pulse amplitude modulation (M-PAM) or M quadrature amplitude modulation (M-QAM) scheme using a plurality of load-modulators, a plurality of antennas, and a communication method thereof are provided. The RFID system includes: an RFID tag; and a reader device communicating with the RFID device, wherein the RFID tag includes: N load-modulators an N antennas communicating with the reader device in any one scheme of M-pulse amplitude modulation (M-PAM) and M-quadrature amplitude modulation (M-QAM) in which modulation of an M level is performed and operated corresponding to the M level.
Abstract:
Disclosed are a method for measuring the adhesive strength of a thin film using surface waves, and a computer-readable recording medium having a program for performing same recorded thereon. The method for measuring the adhesive strength of a thin film measures the adhesive strength between a substrate and a thin film by means of an electronic calculator, using sound waves measured from a thin film structure having a thin film formed on a substrate. The method, which is performed by the electronic calculator, comprises the steps of: receiving, as a first input value, the thickness, density, longitudinal wave velocity, and shear wave velocity of a first thin film and a substrate the adhesive strength between which is to be measured; calculating, from the first input value, the thickness and density of a second thin film virtually configured between the first thin film and substrate, and setting as a second input value; calculating the longitudinal wave velocity and shear wave velocity of the second thin film according to the stiffness constant of the second thin film, while varying the stiffness constant, and setting as a third input value; using the first to third input values to acquire a transfer matrix between the first thin film, second thin film, and substrate; using the transfer matrix to calculate the dispersion characteristics of the speed of surface waves; and substituting, to dispersion curves, the propagation speed of the surface waves measured from the substrate having the first thin film formed thereon, in order to acquire the stiffness constant matching the propagation speed of the measured surface waves and measure the adhesive strength between the substrate and the thin film.
Abstract:
A cargo container is provided. The cargo container includes a frame part, a panel part, a plurality of lead screws and a plurality of guide brackets, so that the cargo container may be operated in a fixing mode or a folding mode according to loading or unloading of cargo. Thus, the volume in the folding mode may be reduced, and transport with stacked may be facilitated, so that a highly efficient cargo container may be provided that is easy to store and transport.
Abstract:
To improve the problems of conventional mine detectors, the purpose of the present invention is to provide a smart wearable mine detector comprising a human body antenna unit 100, a main microprocessor unit 200, a smart eyeglasses unit 300, a body-mounted LCD monitor unit 400, a wireless data transmission and reception unit 500, a belt-type power supply unit 600, a black box-type camera unit 700, and a security communication headset 800, the smart wearable mine detector: can be detachably worn on the head, torso, arm, waist, leg and the like of a body while a combat uniform is worn, thereby having excellent compatibility with conventional combat uniforms; enables a human body antenna unit which is detachably attached to a body and detects a mine through a super high-frequency RF beam and a neutron technique to be applied so as to detect the mine by identifying metals, nonmetals, and initial explosives of the mine; enables mines buried on the ground and under the ground to be detected in all directions (360°), and a distance, location, form, and materials of the mines to be exhibited on smart eyeglasses and a body-mounted LCD monitor unit in real time as 2D or 3D images such that a combatant can engage in battle avoiding mines, thereby improving combat efficiency by 90% when compared to existing combat efficiency; enables a battle to be carried out for three to seven days through a twin self-power supply system of a portable battery and a belt-type power supply unit even without need for charging power; and enables combat situations in a remote place to be monitored, in real time, in a remote combat command server, and allows each combatant to share combat information one to one such that it is possible to construct a smart combat command system capable of remotely commanding real combat situations as if one was on site of the battle.
Abstract:
A cargo container is provided. The cargo container includes a frame part, a panel part, a plurality of lead screws and a plurality of guide brackets, so that the cargo container may be operated in a fixing mode or a folding mode according to loading or unloading of cargo. Thus, the volume in the folding mode may be reduced, and transport with stacked may be facilitated, so that a highly efficient cargo container may be provided that is easy to store and transport.
Abstract:
Provided are a method and a device for transmitting and receiving a traffic stream in a wireless local area network (WLAN) system. Specifically, the device broadcasts a beacon frame including allocation information on a contention-free period (CFP) and allocation information on a contention period (CP) to a station (STA) and transmits a downlink traffic stream to the STA or receives an uplink traffic stream from the STA, based on the allocation information on the CFP. The allocation information on the CFP indicates that the downlink traffic stream is transmitted without performing a clear channel assessment (CCA) during the CFP and indicates that the uplink traffic stream is received with performing a CCA during the CFP.
Abstract:
The present invention provides an apparatus for selectively micro pattern replication using ultrasonic waves, the apparatus including: (1) a to-be-processed substrate scheduled to be replicated with a first pattern in a first area which is a part of a predetermined area; (2) a mold provided with a second pattern at least in an area corresponding to the predetermined area, on which the to-be-processed substrate is fixed; (3) a masking layer provided to be contacted with the to-be-processed substrate on a side opposite to a side facing the mold and including a masking area in an area corresponding to the first area; and (4) a tool horn for transferring ultrasonic vibration to the masking layer. If the tool horn transfers the ultrasonic vibration to the masking layer, the to-be-processed substrate is pressed to the mold.