Abstract:
A feed apparatus has a ball screw, a nut, a drive motor, a braking mechanism and a controller and moves a movable body vertically. When recognizing a movement command for rapid traverse relating to the movable body, the controller, when the movable body is to be moved upward, moves the movable body past a target position according to the movement command and then reverses the moving direction thereof and moves the movable body to the target position and stops it there, and, when the movable body is to be moved downward, moves the movable body directly to the target position and stops it there. After moving the movable body to the target position and stopping it there, the controller causes the drive motor to keep the position of the movable body at the stop position and causes the braking mechanism to brake the movement of the movable body.
Abstract:
Relative movement in X, Y and Z axis directions is made between a main spindle and a table 6 for application in a machine tool in which a work is machined. An emitting element 12 for irradiating laser beam 11 and a photosensitive element 13 are disposed on the table 6. A measuring tool 8 with its top end being shaped as a cone form is attached to the main spindle 4. The laser beam 11 is interrupted with the cone form portion 15 of the measuring tool 8 through relative movement between the table 6 and measuring tool 8 before and after machining a work. Detection signal of interruption is generated at the moment of interruption, position is detected, operation processing is performed so that difference in X, Y and Z axes before and after machining is obtained along with values for correction. Positional coordinate values for three axis directions are detected simultaneously with a measuring device of a simple constitution by use of laser beam and values for correction such as of thermal displacement is obtained by operation processing of displacement values.
Abstract:
A motor may include a motor base plate, a bearing holder provided with a through hole whose both ends hold bearings and vertically disposed with respect to the motor base plate, a stator provided with a center hole and fixed to an outer peripheral face of the bearing holder, and a rotor having a shaft supported by the bearings, a rotor case fixed to the shaft, and a magnet fixed on an inner peripheral face of the rotor case. The bearing holder may be provided with a stepped part, protruded toward a radial direction. The stator may be provided with a first resin block structured so that an end face on a motor base plate side of the stator core is molded with resin to cover a coil wound around the stator core, and inner peripheral faces of the stator core and the first resin block structure the center hole, and the center hole of the stator is press-fitted and fixed to the bearing holder until an end face of the first resin block is abutted with the stepped part.
Abstract:
The invention concerns a feed system control method and apparatus that can calculate an accurate backlash amount and can accomplish highly precise position control. Position errors are calculated before and after a reversal in direction of movement of a slide 30, each from the difference between the position data of the slide 30 detected by a linear scale 25 and the position data of the slide 30 calculated from the rotational position data of the servo motor 23 detected by a rotary encoder 24. The backlash amount of the slide 30 is calculated from the difference between the position error before the reversal and the position error after the reversal thus calculated. Thereafter, when reversing the direction of movement of the slide 30, the feed speed during direction reversal is increased in accordance with the backlash amount.
Abstract:
In a method of controlling a disk driving motor having a rotor to which disks are loaded, an improvement comprises the step of, when the recording/reproducing is performed with respect to a disk, rotating the rotor in a reverse direction by one of a predetermined rotational angle and for a predetermined time during the period from the time the rotor stops rotating in a normal direction to the time the rotor is again driven in the normal direction. A control device for a disk driving motor in accordance with the method is also disclosed.
Abstract:
A rotary electric machine comprising a stator and a rotor arranged opposedly of the stator. A magnet is provided on the stator or a frame for holding the stator at a position so as to be constantly opposed during rotation to a portion of the magnetic body of the rotor. The magnet is disposed at a position other than at a portion at which the magnetic action for rotation of the rotor occurs. The rotor is therefore constantly biased so that rotor play is minimized and non-repeatable deflections of the spindle are eliminated.
Abstract:
A machine tool controlled to restart automatic operation for machining a workpiece from an interrupted point after the machine tool, which has been automatically operated by NC program commands, is caused to interrupt the automatic operation. The NC program commands are classified into a plurality of main groups with respect to the contents of motions for changing the machine state of the machine tool. When the automatic operation of the machine tool restarts after the automatic operation has been interrupted halfway, an order of execution of the NC program commands is determined such that the main groups are arranged in a prescribed order of execution, for automatically generating a machine state restoration command. The automatic operation of the machine tool can restart from the interrupted point without the need for the operator to manually generate or correct a command for restoring the machine tool to its machine.
Abstract:
An accuracy analyzing apparatus 1 comprises: a light projector 2 attached to a main spindle 26 for emitting a light beam having a light axis coaxial with the axis of the main spindle 26; a semitransparent mirror 3 which transmits part of the emitted light beam and reflects other part; a first imaging device 4a for receiving the transmitted light beam; a second imaging device 4b for receiving the reflected light beam; and an analyzer 10 which calculates light receiving positions in the first and second imaging devices 4a and 4b, which estimates the light receiving position where the reflected light beam is to be received by the second imaging device 4b in the case where it is assumed that the axis of the main spindle 26 coincides with the first axis, and which compares the estimated light receiving position with the calculated light receiving position to analyze the perpendicularity of the axis of the main spindle 26.
Abstract:
A machining simulation is performed on a graphic data basis prior to machining. Machining simulation means (17) simulates a forced-vibration frequency and/or a load variation frequency occurring due to interrupted cutting on the basis of machining information, and numerical control command generating means (18) generates a numerical control command on the basis of the frequencies obtained from the machining simulation means (17). A spindle rotation speed can be reflected on the actual machining and the generation of a machining program under conditions optimum for the actual machining. Therefore, the interrupted-cutting forced-vibration frequency and/or load variation frequency, or harmonic frequencies thereof which are integral multiples thereof are prevented from being close to the natural frequency of a machine, a tool, a jig or a workpiece. Thus, chattering due to resonance can be prevented, thereby improving a surface accuracy.
Abstract:
A CNC tapping machine includes a spindle to which a tap is attached and a spindle motor for rotating the spindle. The load torque acting on the spindle motor that is detected when performing a tapping procedure without a workpiece is stored in a memory as referential, torque data. During a tapping procedure, a detection device detects the load torque acting on the spindle motor. A computer computes the difference between the load torque defected by the detection device and the referential load torque and uses the difference as the cutting load acting on the tap. As a result, the cutting load torque acting on the tap is accurately detected.