摘要:
An optical device comprising an optical hydrogel with select regions that have been irradiated with laser light having a pulse energy from 0.01 nJ to 50 nJ and a wavelength from 600 nm to 900 nm. The irradiated regions are characterized by a positive change in refractive index of from 0.01 to 0.06, and exhibit little or no scattering loss. The optical hydrogel is prepared with a hydrophilic monomer.
摘要:
A method for modifying the refractive index of an optical, polymeric material. The method comprises irradiating select regions of the optical, polymeric material with a focused, visible or near-IR laser having a pulse energy from 0.05 nJ to 1000 nJ. The irradiation results in the formation of refractive optical structures, characterized by a change in refractive index, exhibit little or no scattering loss, and exhibit no significant differences in the Raman spectrum with respect to the non-irradiated optical, polymeric material. The method can be used to modify the refractive index of an intraocular lens following the surgical implantation of the intraocular lens in a human eye. The invention is also directed to an optical device comprising refractive optical structures, wherein the refractive structures are characterized by a change in refractive index, exhibit little or no scattering loss, and exhibit no significant differences in the Raman spectrum with respect to the non-irradiated optical, polymeric material.
摘要:
A method for modifying the refractive index of an optical, hydrogel polymeric material. The method comprises irradiating predetermined regions of an optical, polymeric material with a laser to form refractive structures. To facilitate the formation of the refractive structures the optical, hydrogel polymeric material comprises a photosensitizer. The presence of the photosensitizer permits one to set a scan rate to a value that is at least fifty times greater than a scan rate without the photosensitizer in the material, yet provides similar refractive structures in terms of the observed change in refractive index. Alternatively, the photosensitizer in the polymeric material permits one to set an average laser power to a value that is at least two times less than an average laser power without the photosensitizer in the material, yet provide similar refractive structures.
摘要:
A method for modifying the refractive index of an optical polymeric material. The method comprises continuously irradiating predetermined regions of an optical, polymeric material with femtosecond laser pulses to form a gradient index refractive structure within the material. An optical device includes an optical, polymeric lens material having an anterior surface and posterior surface and an optical axis intersecting the surfaces and at least one laser-modified, GRIN layer disposed between the anterior surface and the posterior surface and arranged along a first axis 45° to 90° to the optical axis, and further characterized by a variation in index of refraction across at least one of at least a portion of the adjacent segments and along each segment.
摘要:
The invention is directed to an optical device comprising refractive optical structures, wherein the refractive structures are characterized by a change in refractive index, exhibit little or no scattering loss, and exhibit no significant differences in the Raman spectrum with respect to the non-irradiated optical, polymeric material.
摘要:
The invention is directed to an optical device comprising refractive optical structures, wherein the refractive structures are characterized by a change in refractive index, exhibit little or no scattering loss, and exhibit no significant differences in the Raman spectrum with respect to the non-irradiated optical, polymeric material.
摘要:
A method for modifying the refractive index of an optical, polymeric material. The method comprises irradiating select regions of the optical, polymeric material with a focused, visible or near-IR laser having a pulse energy from 0.05 nJ to 1000 nJ. The irradiation results in the formation of refractive optical structures, which exhibit little or no scattering loss. The method can be used to modify the refractive index of an intraocular lens following the surgical implantation of the intraocular lens in a human eye. The invention is also directed to an optical device comprising refractive optical structures, which exhibit little or no scattering loss and are characterized by a positive change in refractive index.
摘要:
An optical performance monitor (OPM), e.g., for use in an optical network. The OPM may be configured to characterize one or more impairments in an optical signal modulated with data. The OPM has an optical autocorrelator configured to sample the autocorrelation function of the optical signal, e.g., using two-photon absorption. Autocorrelation points at various bit delays independently or in combination with average optical power may be used to detect and/or quantify one or more of the following: loss of data modulation, signal contrast, pulse broadening, peak power fluctuations, timing jitter, and deviations from the pseudo-random character of data. In addition, the OPM may be configured to perform Fourier transformation based on the autocorrelation points to obtain corresponding spectral components. The spectral components may be used to detect and/or quantify one or more of chromatic dispersion, polarization mode dispersion, and misalignment of a pulse carver and data modulator. The OPM may be further configured to generate feedback, e.g., to network operators to improve network performance.
摘要:
For use in a soliton optical pulse transmission system, an apparatus for, and method of, increasing a signal-to-noise ratio of the system. The apparatus includes: (1) a component for receiving a soliton and an accompanying background noise from the system and increasing a power density of the soliton and the accompanying background noise and (2) a saturable absorber, having a predetermined recombination rate, for receiving and absorbing a portion of the soliton and the accompanying background noise, the predetermined recombination rate causing the saturable absorber to absorb a lesser portion of the soliton than of the accompanying background noise, the component having increased the power density of the soliton and the accompanying background noise to increase a sensitivity of the saturable absorber, the apparatus thereby increasing the signal-to-noise ratio of the system.
摘要:
The present invention provides an apparatus and method for high-density optical wavelength division multiplexing (WDM) using a single optical source. An optical wavelength division multiplexer in accordance with the present invention includes an optical source providing an optical pulse signal. A wavelength splitter separates the optical pulse signal spectrum into a plurality of channel signals at different wavelengths such that each channel signal may be separately modulated or otherwise processed. A wavelength combiner then recombines the separately modulated channel signals to provide a high-density WDM optical signal particularly well-suited for use in optical circuit interconnection and optical communication network applications. The high-density single-source multiplexer of the present invention may also be conveniently adjusted to align channel signal wavelengths or to compensate for optical fiber dispersion.