Abstract:
Described are apparatus and method for monitoring revolution speed values detected by corresponding revolution speed sensors too determine whether at least any one of an engine revolution speed sensor, a continuously variable transmission input axle revolution speed sensor, and a continuously variable transmission output axle revolution speed sensor has failed according to detected values of the engine revolution speed sensor, the input axle revolution speed sensor, and the output axle revolution speed sensor and a detected value of an instantaneous gear shift ratio when a lock-up mechanism is in a lock-up state. If all of three formulae on predetermined correlations are established, all of the sensors are determined to be normally operated. If any one or two of the three formulae are not established, the failure one of the three sensors is identified. The three correlation formulae are based as follows: 1) N.sub.E =N.sub.PRI ; 2) N.sub.PRI =N.sub.SEC .times.CN; and 3) N.sub.E =N.sub.PRI .times.C.sub.N, wherein N.sub.E denotes the engine revolution speed, N.sub.PRI denotes the input axle revolution speed, C.sub.N denotes the detected instantaneous gear shift ratio, and N.sub.SEC denotes the detected output axle revolution speed.
Abstract:
A vehicle diagnostic information storage system includes a volatile storage device such as a backup RAM and a nonvolatile storage device such as EEPROM. If a fault occurs, a control section stores data on fault items, and input and output conditions of sensors of a vehicle control system, in the volatile storage device and updates the data in the volatile storage device during a vehicle operation. In response to a switching operation of a vehicle main switch such as a turn-on operation of an ignition switch, the control section transfers the most recent version of updated data from the volatile storage device to the nonvolatile storage device.
Abstract:
A shift control apparatus for an automatic transmission provides a normal-temperature shift pattern and a high-temperature shift pattern. The high-temperature shift pattern is selected when a temperature of hydraulic oil for the transmission satisfies a predetermined condition. Once the high-temperature shift pattern has been selected, the apparatus inhibits the switching to the high-temperature shift pattern for a predetermined duration, thereby to avoid an excessively frequent hunting between the shift patterns.
Abstract:
An apparatus is disclosed which prevents occurrence of an engine stalling in a power train of an automotive vehicle, including an engine and a lock-up type automatic transmission. The apparatus is operative during a braking operation of the vehicle and includes an engine controller to perform an idling speed control for the engine, and a transmission controller to perform a lock-up releasing control for releasing the torque converter from the lock-up mode. When the lock-up releasing control is being performed, the engine controller continuously performs the idling speed control and thereby prevents occurrence of engine stalling.
Abstract:
In a stepping motor cooling apparatus for a belt-type continuously variable transmission, a pair of primary and secondary pulleys are disposed inside a transmission case, and a forward/backward switching unit is disposed coaxially to the primary pulley, furthermore, a stepping motor is disposed below the forward/backward switching unit. An inner case originating from the transmission case surrounds a circumference of the forward/backward switching unit. Through the inner case, a dripping hole is formed at an inner case's portion directly above the stepping motor so that working fluid drained from the forward/backward switching unit can drip on the stepping motor. In order to further improve the cooling effect of the stepping motor, a recess portion is formed immediately below the stepping motor at an upper surface of a valve body disposed under the stepping motor.
Abstract:
In a controller which controls a speed change ratio of a continuously variable transmission to a target speed change ratio set based on the driving conditions of an automobile, the driver manually inputs a command which increases or decreases the speed change ratio. The controller increases or decreases the target speed change ratio by a predetermined amount according to this command. Preferably, this increase/decrease pattern is varied according to the time for which the command continues. The driver of the automobile can thereby achieve a desired speed change ratio by a simple operation.
Abstract:
A shift control apparatus for an automatic transmission provides a normal-temperature shift pattern and a high-temperature shift pattern. The high-temperature shift pattern is selected when a transmission fluid temperature satisfies a predetermined condition. The switching of the shift pattern is inhibited if the vehicle speed is lower than a predetermined speed, even when the temperature related to the transmission or engine has been judged to be higher than a predetermined temperature.
Abstract:
An control apparatus for an automatic transmission includes: a failure shift stage setting section configured to set, to the target shift stage, a shift stage which can be attained in a state in which the one of the solenoids judged that the failure is generated is not energized; and a failure neutral state through section configured to control the solenoids at a predetermined vehicle speed or over so that the automatic transmission is brought to a neutral state, when the target shift stage is a shift stage at which the vehicle speed is suddenly decreased when the solenoids are controlled so that the automatic transmission attains the target shift stage, and to control the solenoids below the predetermined vehicle speed so that the automatic transmission attains the target shift stage.
Abstract:
A solenoid valve control unit which applies overexcitation voltage to a solenoid valve coil corresponding to a supply voltage in an overexcitation period occurring during an initial stage of a duty drive “ON” cycle and the solenoid valve control unit applies a holding voltage to the coil lower than the overexcitation voltage in a holding period occurring during the duty drive “ON” cycle other than the initial stage. Subsequently, the control circuit decreases the effective value of the overexcitation voltage by executing a chopper control effect in the overexcitation period.
Abstract:
A method of controlling automatic transmissions during traction control for reducing engine output upon occurrence of a skid of a driving wheel comprises moving in a high throttle valve opening area a predetermined shift line on the low vehicular speed side, and moving the predetermined shift line on the high vehicular speed side in a low throttle valve opening area.