Abstract:
[Object] To simultaneously meet both of acquisition of depth information with high resolution and high accuracy and a reduction in diameter of a leading end of an endoscope.[Solving Means] Provided is an endoscope apparatus including: an irradiation unit that irradiates a subject with illumination light and with a structured pattern for acquiring depth information of the subject; and an acquisition unit that acquires reflected light of the light emitted by the irradiation unit. With this configuration, it is possible to simultaneously meet both of acquisition of depth information with high resolution and high accuracy and a reduction in diameter of a leading end of an endoscope.
Abstract:
[Object] To reduce a risk that a tone of a specific color component of a subject to be observed in medical operation is defective.[Solution] There is provided a medical image processing device including: a signal acquisition unit configured to acquire a first specific component image signal with a first exposure for a specific color component, a second specific component image signal with a second exposure different from the first exposure for the specific color component, and two non-specific component image signals corresponding to two color components different from the specific color component; a combination unit configured to generate a specific component combination image signal by combining the first specific component image signal and the second specific component image signal by using a weight based on an intensity of the specific color component; and a color image generation unit configured to generate a color image signal on a basis of the specific component combination image signal generated by the combination unit and the two non-specific component image signals.
Abstract:
The present technology relates to an image processing device, an image processing method, a surgery system, and a surgical thread capable of further improving visibility of the thread.The image processing device is provided with an image obtaining unit which obtains a first image imaged under an illumination condition in which the surgical thread fluoresces and a second image imaged under an illumination condition including at least visible light as images of an operative site using the surgical thread which fluoresces, and a synthesis unit which generates a synthetic image obtained by synthesizing an area of the surgical thread of the first image and the second image. The present technology is applicable to, for example, a surgery system and the like.
Abstract:
A feature extracting unit obtains sensor data from a plurality of sensors to calculate each feature. When an event determining unit determines the occurrence of an event based on each feature, a display data constructor generates remote-controller display data for displaying the event, and controls a remote-controller display device to display the remote-controller display data. When a user decision is input from a user input IF based on this display, a control unit controls the sensors to be turned ON or OFF. When an infrared sensor detects an abnormality, a microwave sensor whose power consumption is small after the infrared sensor is turned ON. When the microwave sensor detects an abnormality, a video camera and a microphone are turned ON, and the microwave sensor is turned OFF. A communication unit wirelessly transmits an image signal captured by the video camera and an audio signal processed by the microphone. Then, if the infrared sensor does not detect an abnormality, the video camera and the microphone are turned OFF. With this arrangement, power consumption can be suppressed. The present invention is applied to, for example, a security system, for example, for monitoring outside a vehicle by a video camera disposed in the vehicle when the vehicle is parked.