Abstract:
A method for controlling traffic in an electronic device is provided. The method includes detecting a process request event for a first traffic, identifying whether the first traffic is allowed to be delayed, detecting whether a second traffic is generated if the first traffic is allowed to be delayed in a state where process of the first traffic is delayed, and processing the first traffic and the second traffic simultaneously if the second traffic is generated.
Abstract:
Provided is an apparatus for controlling a data flow for multiple paths in a receiving node of a communication system. The apparatus includes a receiver configured to receive data for a specific sub-flow among a plurality of sub-flows; a controller configured to calculate an optimal transmission rate of the received data, determine a window reference value for generating the optimal transmission rate, and generate an artificial response message if a window size for the specific sub-flow is greater than or equal to the window reference value; and a transmitter configured to transmit the artificial response message to a transmitting node.
Abstract:
The present disclosure relates to a sensor network, Machine Type Communication (MTC), Machine-to-Machine (M2M) communication, and technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the above technologies, such as a smart home, a smart building, a smart city, a smart car, a connected car, healthcare, digital education, smart retail, security and safety services. A method and an apparatus for controlling aperiodic traffic in an electronic device are provided. The method includes determining a delay allowed time for first traffic associated with the first application based on a prediction time of generation of second traffic associated with a second application and processing the first traffic associated with the first application based on the delay allowed time.
Abstract:
The present invention relates to a method for reducing power consumption of a wireless terminal, comprising the operations of: when receiving a triggering packet from the wireless terminal, estimating parameters related to reduction of the power consumption of the wireless terminal; when receiving a condition including a required reduction amount for the power consumption, determined on the basis of the parameters, and time delay related information, setting a clustering cycle corresponding to the condition; and performing a wireless communication with the wireless terminal on the basis of the clustering cycle.
Abstract:
A method of controlling congestion in a base station of a wireless communication system is provided. The method includes receiving a Service Data Unit (SDU) that includes pieces of data forwarded through a caching proxy, driving a timer each time an SDU is received for processing the SDU using a communication protocol, determining whether the SDU has been processed using the communication protocol until expiration of the timer, and controlling a transmission rate of the caching proxy based on a number of SDUs consecutively discarded or a number of SDUs consecutively transmitted depending on whether the timer has expired.
Abstract:
Provided is an apparatus to detect congestion of a network using a receiver of a communication system. The apparatus includes a transport layer information extraction unit configured to extract transmission control protocol frame information from information that is received from a lower layer. The apparatus also includes a congestion information filtering unit configured to identify and output a packet to determine congestion in the transmission control protocol frame information. The apparatus further includes a congestion detection unit configured to determine whether the network is congested using the packet to determine congestion. The apparatus includes a congestion information output unit configured to, upon detecting congestion in the network, deliver information indicating the detection of the congestion in the network to an operating system or other applications.
Abstract:
A method for estimating an available bandwidth for each User Equipment (UE) in a mobile communication system comprises: a process of receiving estimated bandwidth information for at least one UE from an enhanced node B; a process of checking whether the estimated bandwidth information is received from a Medium Access Control (MAC) layer constituting said enhanced node B, or received through a Radio Link Control (RLC) layer or a Packet Data Control Protocol (PDCP) layer; a process of updating channel quality information using said estimated bandwidth information if it is checked that said estimated bandwidth information is received through the MAC layer; a process of updating an average value weighted with respect to the number of bytes of the bandwidth served by said enhanced node B using the estimated bandwidth information if it is checked that said estimated bandwidth information is received through the RLC or PDCP layer; and a process of calculating the bandwidth currently available by at least one UE using the updated channel quality information or the average value weighted with respect to the number of the bytes of the served bandwidth, and then transmitting the calculated bandwidth to a server.
Abstract:
A method and apparatus for supporting a handover through the Internet. A source proxy performs receiving, through an eNB from a UE, a connection request to a server, establishing a first TCP session with an anchor proxy designated for the server, and transferring data received from the server through the first TCP session, receiving a handover preparation notification including an IP address of the UE from the eNB, as the UE is handed over to a target eNB; transferring session information associated with the first TCP session and information associated with a target proxy related with the target base station; transferring, to the target proxy, the session information associated with the first TCP session, and when a handover start notification is received from the eNB, freezing the first TCP session, and transferring, to the target proxy, state information associated with data being transmitted through the first TCP session.
Abstract:
The present disclosure relates to a sensor network, machine type communication (MTC), machine-to-machine (M2M) communication, and technology for internet of things (IoT). The present disclosure may be applied to intelligent services based on the above technologies, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method includes acquiring a shared address for at least one file stored at a cloud storage server upon detecting that the at least one file needs to be backed up, determining at least one other cloud storage server to which the at least one file will be backed up, and transmitting a backup request message including the shared address to the at least one other cloud storage server.
Abstract:
A method for transmitting data in a mobile device includes transmitting, to a reception device, a connection request message comprising information indicating whether the transmission device supports message transmission having temporal correlation; receiving, from the reception device, a connection response message comprising information indicating whether the reception device supports the message transmission in response to the connection request message; and if both the transmission device and the reception device support the message transmission, transmitting, to the reception device, at least two of messages having temporal correlation, the at least two of messages comprising identification information, wherein the identification information indicates that the at least two of messages have temporal correlation.