Abstract:
A method for computing a dominant class of a scene includes: receiving an input image of a scene; generating a segmentation map of the input image, the segmentation map being labeled with a plurality of corresponding classes of a plurality of classes; computing a plurality of area ratios based on the segmentation map, each of the area ratios corresponding to a different class of the plurality of classes of the segmentation map; and outputting a detected dominant class of the scene based on a plurality of ranked labels based on the area ratios.
Abstract:
A method for denoising an image includes: receiving, by a processing circuit of a user equipment, an input image; supplying, by the processing circuit, the input image to a trained convolutional neural network (CNN) including a multi-scale residual dense block (MRDB), the MRDB including: a residual dense block (RDB); and an atrous spatial pyramid pooling (ASPP) module; computing, by the processing circuit, an MRDB output feature map using the MRDB; and computing, by the processing circuit, an output image based on the MRDB output feature map, the output image being a denoised version of the input image.
Abstract:
A method for computing a dominant class of a scene includes: receiving an input image of a scene; generating a segmentation map of the input image, the segmentation map including a plurality of pixels, each of the pixels being labeled with a corresponding class of a plurality of classes; computing a plurality of area ratios based on the segmentation map, each of the area ratios corresponding to a different class of the plurality of classes of the segmentation map; applying inference to generate a plurality of ranked labels based on the area ratios; and outputting a detected dominant class of the scene based on the plurality of ranked labels.
Abstract:
A system and method for removing bias from a frequency estimate. A simulation is used to predict, for various values of the signal to noise ratio, a bias in a raw frequency estimate produced by a frequency estimation algorithm. A straight line is fit to simulated frequency offset estimates as a function of true frequency offset, and the reciprocal of the slope of the line is stored, as a multiplicative bias removal term, in a lookup table, for the simulated signal to noise ratio. In operation, the raw frequency estimate is multiplied by a multiplicative bias removal term, obtained from the lookup table, to form a corrected frequency offset estimate.
Abstract:
A method and an apparatus. The method includes receiving a signal including a serving signal and an interference signal; applying a Gaussian approximation (GA) on the serving signal and the interference signal; determining, jointly, a maximum likelihood (ML) solution of rank, traffic to pilot ratio (TPR), and precoding matrix index on the GA-applied serving signal and the GA-applied interference signal. The apparatus includes an antenna for receiving a signal including a serving signal and an interference signal; a processor configured to apply a GA on the serving signal and the interference signal, and determine, jointly, an ML solution of rank, TPR, and precoding matrix index on the GA-applied serving signal and the GA-applied interference signal.
Abstract:
Methods and apparatus for soft MIMO detection of high order QAM with initial candidate reduction are described. A method includes receiving a plurality of signals including Q-order QAM symbols; determining a reduced candidate set including C potential candidates, where C is less than Q; calculating Euclidean distances (EDs) based on the reduced candidate set; and generating LLR information based on the calculated EDs.
Abstract:
A computing system includes: an antenna configured to receive a receiver signal for representing a serving signal and an interference signal; a communication unit, coupled to the antenna, configured to: calculate a decoding result based on the receiver signal, generate an interference modulation estimate based on the decoding result and the receiver signal, and calculate a content result based on the interference modulation estimate for representing the serving signal.
Abstract:
A communication system includes: a decoding-probability module for calculating a decoding likelihood with a control unit for characterizing an alternative hypothesis regarding an arriving communication; a null-probability module, coupled to the decoding-probability module, for calculating a null likelihood for characterizing a null hypothesis regarding the arriving communication; a weight-calculation module, coupled to the decoding-probability module, for generating a decision weight corresponding to the decoding likelihood, the null likelihood, or a combination thereof; a reliability calculation module, coupled to the decoding-probability module, for calculating a decoding reliability with the decision weight, the decoding likelihood, and the null likelihood, the decoding reliability corresponding to a decoded-result; and a decoding module, coupled to the reliability calculation module, for decoding the arriving communication with a decoding parameter based on the decoding reliability for communicating with a device.
Abstract:
A communication system includes: a decoding-probability module for calculating a decoding likelihood with a control unit for characterizing an alternative hypothesis regarding an arriving communication; a null-probability module, coupled to the decoding-probability module, for calculating a null likelihood for characterizing a null hypothesis regarding the arriving communication; a weight-calculation module, coupled to the decoding-probability module, for generating a decision weight corresponding to the decoding likelihood, the null likelihood, or a combination thereof; a reliability calculation module, coupled to the decoding-probability module, for calculating a decoding reliability with the decision weight, the decoding likelihood, and the null likelihood, the decoding reliability corresponding to a decoded-result; and a decoding module, coupled to the reliability calculation module, for decoding the arriving communication with a decoding parameter based on the decoding reliability for communicating with a device.
Abstract:
Provided is a method of decoding, the method including receiving, by a user equipment (UE), a downlink control information (DCI) that is encoded, identifying, by the UE, a first bit position of the DCI as a known bit, and reducing a number of candidate code words for the DCI based on the known bit.